• Title/Summary/Keyword: SHM (Structural Health Monitoring)

Search Result 314, Processing Time 0.028 seconds

Dynamic Characteristics of Seohae Cable-stayed Bridge Based on Long-term Measurements (장기계측에 의한 서해대교 사장교의 동특성 평가)

  • Park, Jong-Chil;Park, Chan-Min;Kim, Byeong-Hwa;Lee, Il-Keun;Jo, Byung-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.115-123
    • /
    • 2006
  • This paper presents long-term dynamic characteristics of a cable-stayed bridge where installed SHM (Structural Health Monitoring) system. Modal parameters such as natural frequencies and mode shapes are identified by modal analysis using three dimensional finite element model. The developed baseline model has a good correlation with measured natural frequencies identified from field ambient vibrations. By statistical data processing between measured natural frequencies and temperatures, it is demonstrated that the natural frequency is in linearly inverse proportion to the temperature. The estimation of temperature effects against frequency variations is performed. Mode shapes are identified from the TDD (Time Domain Decomposition) technique for ambient vibration measurements. Finally, these results demonstrate that the TDD method can apply to identify modal parameters of a cable-stayed bridge.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

Structural identification of Humber Bridge for performance prognosis

  • Rahbari, R.;Niu, J.;Brownjohn, J.M.W.;Koo, K.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.665-682
    • /
    • 2015
  • Structural identification or St-Id is 'the parametric correlation of structural response characteristics predicted by a mathematical model with analogous characteristics derived from experimental measurements'. This paper describes a St-Id exercise on Humber Bridge that adopted a novel two-stage approach to first calibrate and then validate a mathematical model. This model was then used to predict effects of wind and temperature loads on global static deformation that would be practically impossible to observe. The first stage of the process was an ambient vibration survey in 2008 that used operational modal analysis to estimate a set of modes classified as vertical, torsional or lateral. In the more recent second stage a finite element model (FEM) was developed with an appropriate level of refinement to provide a corresponding set of modal properties. A series of manual adjustments to modal parameters such as cable tension and bearing stiffness resulted in a FEM that produced excellent correspondence for vertical and torsional modes, along with correspondence for the lower frequency lateral modes. In the third stage traffic, wind and temperature data along with deformation measurements from a sparse structural health monitoring system installed in 2011 were compared with equivalent predictions from the partially validated FEM. The match of static response between FEM and SHM data proved good enough for the FEM to be used to predict the un-measurable global deformed shape of the bridge due to vehicle and temperature effects but the FEM had limited capability to reproduce static effects of wind. In addition the FEM was used to show internal forces due to a heavy vehicle to to estimate the worst-case bearing movements under extreme combinations of wind, traffic and temperature loads. The paper shows that in this case, but with limitations, such a two-stage FEM calibration/validation process can be an effective tool for performance prognosis.

A hybrid self-adaptive Firefly-Nelder-Mead algorithm for structural damage detection

  • Pan, Chu-Dong;Yu, Ling;Chen, Ze-Peng;Luo, Wen-Feng;Liu, Huan-Lin
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.957-980
    • /
    • 2016
  • Structural damage detection (SDD) is a challenging task in the field of structural health monitoring (SHM). As an exploring attempt to the SDD problem, a hybrid self-adaptive Firefly-Nelder-Mead (SA-FNM) algorithm is proposed for the SDD problem in this study. First of all, the basic principle of firefly algorithm (FA) is introduced. The Nelder-Mead (NM) algorithm is incorporated into FA for improving the local searching ability. A new strategy for exchanging the information in the firefly group is introduced into the SA-FNM for reducing the computation cost. A random walk strategy for the best firefly and a self-adaptive control strategy of three key parameters, such as light absorption, randomization parameter and critical distance, are proposed for preferably balancing the exploitation and exploration ability of the SA-FNM. The computing performance of the SA-FNM is evaluated and compared with the basic FA by three benchmark functions. Secondly, the SDD problem is mathematically converted into a constrained optimization problem, which is then hopefully solved by the SA-FNM algorithm. A multi-step method is proposed for finding the minimum fitness with a big probability. In order to assess the accuracy and the feasibility of the proposed method, a two-storey rigid frame structure without considering the finite element model (FEM) error and a steel beam with considering the model error are taken examples for numerical simulations. Finally, a series of experimental studies on damage detection of a steel beam with four damage patterns are performed in laboratory. The illustrated results show that the proposed method can accurately identify the structural damage. Some valuable conclusions are made and related issues are discussed as well.

Health monitoring sensor placement optimization for Canton Tower using virus monkey algorithm

  • Yi, Ting-Hua;Li, Hong-Nan;Zhang, Xu-Dong
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1373-1392
    • /
    • 2015
  • Placing sensors at appropriate locations is an important task in the design of an efficient structural health monitoring (SHM) system for a large-scale civil structure. In this paper, a hybrid optimization algorithm called virus monkey algorithm (VMA) based on the virus theory of evolution is proposed to seek the optimal placement of sensors. Firstly, the dual-structure coding method is adopted instead of binary coding method to code the solution. Then, the VMA is designed to incorporate two populations, a monkey population and a virus population, enabling the horizontal propagation between the monkey and virus individuals and the vertical inheritance of monkey's position information from the previous to following position. Correspondingly, the monkey population in this paper is divided into the superior and inferior monkey populations, and the virus population is divided into the serious and slight virus populations. The serious virus is used to infect the inferior monkey to make it escape from the local optima, while the slight virus is adopted to infect the superior monkey to let it find a better result in the nearby area. This kind of novel virus infection operator enables the coevolution of monkey and virus populations. Finally, the effectiveness of the proposed VMA is demonstrated by designing the sensor network of the Canton Tower, the tallest TV Tower in China. Results show that innovations in the VMA proposed in this paper can improve the convergence of algorithm compared with the original monkey algorithm (MA).

Modal identification of Canton Tower under uncertain environmental conditions

  • Ye, Xijun;Yan, Quansheng;Wang, Weifeng;Yu, Xiaolin
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.353-373
    • /
    • 2012
  • The instrumented Canton Tower is a 610 m high-rise structure, which has been considered as a benchmark problem for structural health monitoring (SHM) research. In this paper, an improved automatic modal identification method is presented based on a natural excitation technique in conjunction with the eigensystem realization algorithm (NExT/ERA). In the proposed modal identification method, damping ratio, consistent mode indicator from observability matrices (CMI_O) and modal amplitude coherence (MAC) are used as criteria to distinguish the physically true modes from spurious modes. Enhanced frequency domain decomposition (EFDD), the data-driven stochastic subspace identification method (SSI-DATA) and the proposed method are respectively applied to extract the modal parameters of the Canton Tower under different environmental conditions. Results of modal parameter identification based on output-only measurements are presented and discussed. User-selected parameters used in those methods are suggested and discussed. Furthermore, the effect of environmental conditions on the dynamic characteristics of Canton tower is investigated.

EMI based multi-bolt looseness detection using series/parallel multi-sensing technique

  • Chen, Dongdong;Huo, Linsheng;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • In this paper, a novel but practical approach named series/parallel multi-sensing technique was proposed to evaluate the bolt looseness in a bolt group. The smart washers (SWs), which were fabricated by embedding a Lead Zirconate Titanate (PZT) transducer into two flat metal rings, were installed to the bolts group. By series connection of SWs, the impedance signals of different bolts can be obtained through only one sweep. Therefore, once the loosening occurred, the shift of different peak frequencies can be used to locate which bolt has loosened. The proposed multi input single output (MISO) damage detection scheme is very suitable for the structural health monitoring (SHM) of joint with a large number of bolts connection. Another notable contribution of this paper is the proposal of 3-dB bandwidth root mean square deviation (3 dB-RMSD) which can quantitatively evaluate the severity of bolt looseness. Compared with the traditional naked-eye observation method, the equivalent circuit based 3-dB bandwidth can accurately define the calculation range of RMSD. An experiment with three bolted connection specimens that installed the SWs was carried out to validate our proposed approach. Experimental result shows that the proposed 3 dB-RMSD based multi-sensing technique can not only identify the loosened bolt but also monitor the severity of bolt looseness.

MODE CONTROL OF GUIDED WAVE IN MAGNETIC HOLLOW CYLINDER USING ELECTROMAGNETIC ACOUSTIC TRANSDUCER ARRAY

  • FURUSAWA, AKINORI;KOJIMA, FUMIO;MORIKAWA, ATSUSHI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.196-203
    • /
    • 2015
  • The aim of this work is to demonstrate a method for exciting and receiving torsional and longitudinal mode guided waves with an electromagnetic acoustic transducer (EMAT) ring array. First of all, a three-dimensional guided wave simulator is developed in order to numerically analyze the propagation of the guided wave. The finite difference time domain method is used for the simulator. Second, two guided wave testing systems using an EMAT ring array are provided: one is for torsional mode (T-mode) guided wave and the other is for longitudinal mode (L-mode). The EMATs used in the both systems are the same in design. A method to generate and receive the T- and L-mode guided waves with the same EMAT is proposed. Finally, experimental and numerical results are compared and discussed. The results of experiments and simulation agree well, showing the potential of the EMAT ring array as a mode controllable guided wave transmitter and receiver.

Multiple damages detection in beam based approximate waveform capacity dimension

  • Yang, Zhibo;Chen, Xuefeng;Tian, Shaohua;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.663-673
    • /
    • 2012
  • A number of mode shape-based structure damage identification methods have been verified by numerical simulations or experiments for on-line structure health monitoring (SHM). However, many of them need a baseline mode shape generated by the healthy structure serving as a reference to identify damages. Otherwise these methods can hardly perform well when multiple cracks conditions occur. So it is important to solve the problems above. By aid of the fractal dimension method (FD), Qiao and Wang proposed a generalized fractal dimension (GFD) to detect the delamination damage. As a modification of GFD, Qiao and Cao proposed the approximate waveform capacity dimension (AWCD) technique to simplify the calculation of fractal and overcome the false peak appearing in the high mode shapes. Based on their valued work, this paper combined and applied the AWCD method and curvature mode shape data to detect multiple damages in beam. In the end, the identification properties of the AWCD for multiple damages have been verified by groups of Monte Carlo simulations and experiments.

Multi-dimensional sensor placement optimization for Canton Tower focusing on application demands

  • Yi, Ting-Hua;Li, Hong-Nan;Wang, Xiang
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.235-250
    • /
    • 2013
  • Optimal sensor placement (OSP) technique plays a key role in the structural health monitoring (SHM) of large-scale structures. According to the mathematical background and implicit assumptions made in the triaxial effective independence (EfI) method, this paper presents a novel multi-dimensional OSP method for the Canton Tower focusing on application demands. In contrast to existing methods, the presented method renders the corresponding target mode shape partitions as linearly independent as possible and, at the same time, maintains the stability of the modal matrix in the iteration process. The modal assurance criterion (MAC), determinant of the Fisher Information Matrix (FIM) and condition number of the FIM have been taken as the optimal criteria, respectively, to demonstrate the feasibility and effectiveness of the proposed method. Numerical investigations suggest that the proposed method outperforms the original EfI method in all instances as expected, which is looked forward to be even more pronounced should it be used for other multi-dimensional optimization problems.