• Title/Summary/Keyword: SHM (Structural Health Monitoring)

Search Result 314, Processing Time 0.03 seconds

Impact identification and localization using a sample-force-dictionary - General Theory and its applications to beam structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.195-214
    • /
    • 2016
  • Monitoring of impact loads is a very important technique in the field of structural health monitoring (SHM). However, in most cases it is not possible to measure impact events directly, so they need to be reconstructed. Impact load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response function are usually known. Generally this leads to a so called ill-posed inverse problem. It is reasonable to use prior knowledge of the force in order to develop more suitable reconstruction strategies and to increase accuracy. An impact event is characterized by a short time duration and a spatial concentration. Moreover the force time history of an impact has a specific shape, which also can be taken into account. In this contribution these properties of the external force are employed to create a sample-force-dictionary and thus to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The reconstruction approach shown here is capable to estimate simultaneously the magnitude of the impact and the impact location, with a minimum number of accelerometers. The possibility of reconstructing the impact based on a noisy output signal is first demonstrated with simulated measurements of a simple beam structure. Then an experimental investigation of a real beam is performed.

Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects

  • Wang, Xin;Li, Zhonglong;Zhuo, Yi;Di, Hao;Wei, Jianfeng;Li, Yuchen;Li, Shunlong
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.827-838
    • /
    • 2021
  • The dynamic displacement is considered to be an important indicator of structural safety, and becomes an indispensable part of Structural Health Monitoring (SHM) system for high-speed railway bridges. This paper proposes an indirect strain based dynamic displacement reconstruction methodology for high-speed railway box girders. For the typical box girders under eccentric train load, the plane section assumption and elementary beam theory is no longer applicable due to the bend-torsion coupling effects. The monitored strain was decoupled into bend and torsion induced strain, pre-trained multi-output support vector regression (M-SVR) model was employed for such decoupling process considering the sensor layout cost and reconstruction accuracy. The decoupled strained based displacement could be reconstructed respectively using box girder plate element analysis and mode superposition principle. For the transformation modal matrix has a significant impact on the reconstructed displacement accuracy, the modal order would be optimized using particle swarm algorithm (PSO), aiming to minimize the ill conditioned degree of transformation modal matrix and the displacement reconstruction error. Numerical simulation and dynamic load testing results show that the reconstructed displacement was in good agreement with the simulated or measured results, which verifies the validity and accuracy of the algorithm proposed in this paper.

Gaussian mixture model for automated tracking of modal parameters of long-span bridge

  • Mao, Jian-Xiao;Wang, Hao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.243-256
    • /
    • 2019
  • Determination of the most meaningful structural modes and gaining insight into how these modes evolve are important issues for long-term structural health monitoring of the long-span bridges. To address this issue, modal parameters identified throughout the life of the bridge need to be compared and linked with each other, which is the process of mode tracking. The modal frequencies for a long-span bridge are typically closely-spaced, sensitive to the environment (e.g., temperature, wind, traffic, etc.), which makes the automated tracking of modal parameters a difficult process, often requiring human intervention. Machine learning methods are well-suited for uncovering complex underlying relationships between processes and thus have the potential to realize accurate and automated modal tracking. In this study, Gaussian mixture model (GMM), a popular unsupervised machine learning method, is employed to automatically determine and update baseline modal properties from the identified unlabeled modal parameters. On this foundation, a new mode tracking method is proposed for automated mode tracking for long-span bridges. Firstly, a numerical example for a three-degree-of-freedom system is employed to validate the feasibility of using GMM to automatically determine the baseline modal properties. Subsequently, the field monitoring data of a long-span bridge are utilized to illustrate the practical usage of GMM for automated determination of the baseline list. Finally, the continuously monitoring bridge acceleration data during strong typhoon events are employed to validate the reliability of proposed method in tracking the changing modal parameters. Results show that the proposed method can automatically track the modal parameters in disastrous scenarios and provide valuable references for condition assessment of the bridge structure.

Structural modal identification and MCMC-based model updating by a Bayesian approach

  • Zhang, F.L.;Yang, Y.P.;Ye, X.W.;Yang, J.H.;Han, B.K.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.631-639
    • /
    • 2019
  • Finite element analysis is one of the important methods to study the structural performance. Due to the simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under operational environment was collected. The first six translational modes of the structure were identified by the enhanced frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a benchmark model for structural health monitoring (SHM).

Determination and evaluation of dynamic properties for structures using UAV-based video and computer vision system

  • Rithy Prak;Ji Ho Park;Sanggi Jeong;Arum Jang;Min Jae Park;Thomas H.-K. Kang;Young K. Ju
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.457-468
    • /
    • 2023
  • Buildings, bridges, and dams are examples of civil infrastructure that play an important role in public life. These structures are prone to structural variations over time as a result of external forces that might disrupt the operation of the structures, cause structural integrity issues, and raise safety concerns for the occupants. Therefore, monitoring the state of a structure, also known as structural health monitoring (SHM), is essential. Owing to the emergence of the fourth industrial revolution, next-generation sensors, such as wireless sensors, UAVs, and video cameras, have recently been utilized to improve the quality and efficiency of building forensics. This study presents a method that uses a target-based system to estimate the dynamic displacement and its corresponding dynamic properties of structures using UAV-based video. A laboratory experiment was performed to verify the tracking technique using a shaking table to excite an SDOF specimen and comparing the results between a laser distance sensor, accelerometer, and fixed camera. Then a field test was conducted to validate the proposed framework. One target marker is placed on the specimen, and another marker is attached to the ground, which serves as a stationary reference to account for the undesired UAV movement. The results from the UAV and stationary camera displayed a root mean square (RMS) error of 2.02% for the displacement, and after post-processing the displacement data using an OMA method, the identified natural frequency and damping ratio showed significant accuracy and similarities. The findings illustrate the capabilities and reliabilities of the methodology using UAV to evaluate the dynamic properties of structures.

Survey on robotics and automation technologies for civil infrastructure

  • Myung, Hyun;Wang, Yang;Kang, Shih-Chung Jessy;Chen, XiaoQi
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.891-899
    • /
    • 2014
  • Over the past several decades, substantial amounts of sensors and sensing systems have been developed for civil infrastructure systems. This special issue focuses on state-of-the-art robotics and automation technologies, including construction automation, robotics, instrumentation, monitoring, inspection, control, and rehabilitation for civil infrastructure. The issue also covers construction informatics supporting sensing, analysis and design activities needed to operate smart and sustainable civil infrastructure. Examples include robotic systems applied to civil infrastructure and equipped with various sensing technologies, such as optical sensors, laser sensors, wireless sensors, multi-sensor fusion, etc. This special issue is published in an effort to disseminate current advances of various robotics and automation technologies for civil infrastructure and built environment.

Damage detection in Ca-Non Bridge using transmissibility and artificial neural networks

  • Nguyen, Duong H.;Bui, Thanh T.;De Roeck, Guido;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.175-183
    • /
    • 2019
  • This paper deals with damage detection in a girder bridge using transmissibility functions as input data to Artificial Neural Networks (ANNs). The original contribution in this work is that these two novel methods are combined to detect damage in a bridge. The damage was simulated in a real bridge in Vietnam, i.e. Ca-Non Bridge. Finite Element Method (FEM) of this bridge was used to show the reliability of the proposed technique. The vibration responses at some points of the bridge under a moving truck are simulated and used to calculate the transmissibility functions. These functions are then used as input data to train the ANNs, in which the target is the location and the severity of the damage in the bridge. After training successfully, the network can be used to assess the damage. Although simulated responses data are used in this paper, the practical application of the technique to real bridge data is potentially high.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

Guided wave analysis of air-coupled impact-echo in concrete slab

  • Choi, Hajin;Azari, Hoda
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.257-262
    • /
    • 2017
  • This study aims to develop a signal processing scheme to accurately predict the thickness of concrete slab using air-coupled impact-echo. Air-coupled impact-echo has been applied to concrete non-destructive tests (NDT); however, it is often difficult to obtain thickness mode frequency due to noise components. Furthermore, apparent velocity in concrete is a usually unknown parameter in the field and the thickness of the concrete slab often cannot be accurately measured. This study proposes a signal processing scheme using guided wave analysis, wherein dispersion curves are drawn in both frequency-wave number (f-k) and phase velocity-frequency ($V_{cp}-f$) domains. The theoretical and experimental results demonstrate that thickness mode frequency and apparent velocity in concrete are clearly obtained from the f-k and $V_{cp}-f$ domains, respectively. The proposed method has great potential with regard to the application of air-coupled impact-echo in the field.

Statistics and probability analysis of vehicle overloads on a rigid frame bridge from long-term monitored strains

  • Li, Yinghua;Tang, Liqun;Liu, Zejia;Liu, Yiping
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.287-301
    • /
    • 2012
  • It is well known that overloaded vehicles may cause severe damages to bridges, and how to estimate and evaluate the status of the overloaded vehicles passing through bridges become a challenging problem. Therefore, based on the monitored strain data from a structural health monitoring system (SHM) installed on a bridge, a method is recommended to identify and analyze the probability of overloaded vehicles. Overloaded vehicle loads can cause abnormity in the monitored strains, though the abnormal strains may be small in a concrete continuous rigid frame bridge. Firstly, the abnormal strains are identified from the abundant strains in time sequence by taking the advantage of wavelet transform in abnormal signal identification; secondly, the abnormal strains induced by heavy vehicles are picked up by the comparison between the identified abnormal strains and the strain threshold gotten by finite element analysis of the normal heavy vehicle; finally, according to the determined abnormal strains induced by overloaded vehicles, the statistics of the overloaded vehicles passing through the bridge are summarized and the whole probability of the overloaded vehicles is analyzed. The research shows the feasibility of using the monitored strains from a long-term SHM to identify the information of overloaded vehicles passing through a bridge, which can help the traffic department to master the heavy truck information and do the damage analysis of bridges further.