• Title/Summary/Keyword: SHM (Structural Health Monitoring)

Search Result 314, Processing Time 0.025 seconds

Damage identification for high-speed railway truss arch bridge using fuzzy clustering analysis

  • Cao, Bao-Ya;Ding, You-Liang;Zhao, Han-Wei;Song, Yong-Sheng
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.315-333
    • /
    • 2016
  • This study aims to perform damage identification for Da-Sheng-Guan (DSG) high-speed railway truss arch bridge using fuzzy clustering analysis. Firstly, structural health monitoring (SHM) system is established for the DSG Bridge. Long-term field monitoring strain data in 8 different cases caused by high-speed trains are taken as classification reference for other unknown cases. And finite element model (FEM) of DSG Bridge is established to simulate damage cases of the bridge. Then, effectiveness of one fuzzy clustering analysis method named transitive closure method and FEM results are verified using the monitoring strain data. Three standardization methods at the first step of fuzzy clustering transitive closure method are compared: extreme difference method, maximum method and non-standard method. At last, the fuzzy clustering method is taken to identify damage with different degrees and different locations. The results show that: non-standard method is the best for the data with the same dimension at the first step of fuzzy clustering analysis. Clustering result is the best when 8 carriage and 16 carriage train in the same line are in a category. For DSG Bridge, the damage is identified when the strain mode change caused by damage is more significant than it caused by different carriages. The corresponding critical damage degree called damage threshold varies with damage location and reduces with the increase of damage locations.

Evaluation of torsional response of a long-span suspension bridge under railway traffic and typhoons based on SHM data

  • Xia, Yun-Xia;Ni, Yi-Qing;Zhang, Chi
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.371-392
    • /
    • 2014
  • Long-span cable-supported bridges are flexible structures vulnerable to unsymmetric loadings such as railway traffic and strong wind. The torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds may deform the railway track laid on the bridge deck and affect the running safety of trains and the comfort of passengers, and even lead the bridge to collapse. Therefore, it is eager to figure out the torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds. The Tsing Ma Bridge (TMB) in Hong Kong is a suspension bridge with a main span of 1,377 m, and is currently the world's longest suspension bridge carrying both road and rail traffic. Moreover, this bridge is located in one of the most active typhoon-prone regions in the world. A wind and structural health monitoring system (WASHMS) was installed on the TMB in 1997, and after 17 years of successful operation it is still working well as desired. Making use of one-year monitoring data acquired by the WASHMS, the torsional dynamic responses of the bridge deck under rail traffic and strong winds are analyzed. The monitoring results demonstrate that the differences of vertical displacement at the opposite edges and the corresponding rotations of the bridge deck are less than 60 mm and $0.1^{\circ}$ respectively under weak winds, and less than 300 mm and $0.6^{\circ}$ respectively under typhoons, implying that the torsional dynamic response of the bridge deck under rail traffic and wind loading is not significant due to the rational design.

Damage evaluation of seismic response of structure through time-frequency analysis technique

  • Chen, Wen-Hui;Hseuh, Wen;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.107-127
    • /
    • 2022
  • Structural health monitoring (SHM) has been related to damage identification with either operational loads or other environmental loading playing a significant complimentary role in terms of structural safety. In this study, a non-parametric method of time frequency analysis on the measurement is used to address the time-frequency representation for modal parameter estimation and system damage identification of structure. The method employs the wavelet decomposition of dynamic data by using the modified complex Morlet wavelet with variable central frequency (MCMW+VCF). Through detail discussion on the selection of model parameter in wavelet analysis, the method is applied to study the dynamic response of both steel structure and reinforced concrete frame under white noise excitation as well as earthquake excitation from shaking table test. Application of the method to building earthquake response measurement is also examined. It is shown that by using the spectrogram generated from MCMW+VCF method, with suitable selected model parameter, one can clearly identify the time-varying modal frequency of the reinforced concrete structure under earthquake excitation. Discussions on the advantages and disadvantages of the method through field experiments are also presented.

A statistical reference-free damage identification for real-time monitoring of truss bridges using wavelet-based log likelihood ratios

  • Lee, Soon Gie;Yun, Gun Jin
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.181-207
    • /
    • 2013
  • In this paper, a statistical reference-free real-time damage detection methodology is proposed for detecting joint and member damage of truss bridge structures. For the statistical damage sensitive index (DSI), wavelet packet decomposition (WPD) in conjunction with the log likelihood ratio was suggested. A sensitivity test for selecting a wavelet packet that is most sensitive to damage level was conducted and determination of the level of decomposition was also described. Advantages of the proposed method for applications to real-time health monitoring systems were demonstrated by using the log likelihood ratios instead of likelihood ratios. A laboratory truss bridge structure instrumented with accelerometers and a shaker was used for experimental verification tests of the proposed methodology. The statistical reference-free real-time damage detection algorithm was successfully implemented and verified by detecting three damage types frequently observed in truss bridge structures - such as loss of bolts, loosening of bolts at multiple locations, sectional loss of members - without reference signals from pristine structure. The DSI based on WPD and the log likelihood ratio showed consistent and reliable results under different damage scenarios.

Energy harvesting techniques for health monitoring and indicators for control of a damaged pipe structure

  • Cahill, Paul;Pakrashi, Vikram;Sun, Peng;Mathewson, Alan;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.287-303
    • /
    • 2018
  • Applications of energy harvesting from mechanical vibrations is becoming popular but the full potential of such applications is yet to be explored. This paper addresses this issue by considering an application of energy harvesting for the dual objective of serving as an indicator of structural health monitoring (SHM) and extent of control. Variation of harvested energy from an undamaged baseline is employed for this purpose and the concept is illustrated by implementing it for active vibrations of a pipe structure. Theoretical and experimental analyses are carried out to determine the energy harvesting potential from undamaged and damaged conditions. The use of energy harvesting as indicator for control is subsequently investigated, considering the effect of the introduction of a tuned mass damper (TMD). It is found that energy harvesting can be used for the detection and monitoring of the location and magnitude of damage occurring within a pipe structure. Additionally, the harvested energy acts as an indicator of the extent of reduction of vibration of pipes when a TMD is attached. This paper extends the range of applications of energy harvesting devices for the monitoring of built infrastructure and illustrates the vast potential of energy harvesters as smart sensors.

Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning

  • Lydon, Darragh;Taylor, S.E.;Lydon, Myra;Martinez del Rincon, Jesus;Hester, David
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.723-732
    • /
    • 2019
  • Globally road transport networks are subjected to continuous levels of stress from increasing loading and environmental effects. As the most popular mean of transport in the UK the condition of this civil infrastructure is a key indicator of economic growth and productivity. Structural Health Monitoring (SHM) systems can provide a valuable insight to the true condition of our aging infrastructure. In particular, monitoring of the displacement of a bridge structure under live loading can provide an accurate descriptor of bridge condition. In the past B-WIM systems have been used to collect traffic data and hence provide an indicator of bridge condition, however the use of such systems can be restricted by bridge type, assess issues and cost limitations. This research provides a non-contact low cost AI based solution for vehicle classification and associated bridge displacement using computer vision methods. Convolutional neural networks (CNNs) have been adapted to develop the QUBYOLO vehicle classification method from recorded traffic images. This vehicle classification was then accurately related to the corresponding bridge response obtained under live loading using non-contact methods. The successful identification of multiple vehicle types during field testing has shown that QUBYOLO is suitable for the fine-grained vehicle classification required to identify applied load to a bridge structure. The process of displacement analysis and vehicle classification for the purposes of load identification which was used in this research adds to the body of knowledge on the monitoring of existing bridge structures, particularly long span bridges, and establishes the significant potential of computer vision and Deep Learning to provide dependable results on the real response of our infrastructure to existing and potential increased loading.

Implementation of Noise Reduction Methodology to Modal Distribution Method

  • Choi, Myoung-Keun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • Vibration-based Structural Health Monitoring (SHM) systems use field measurements of operational signals, which are distorted by noise from many sources. Reducing this noise allows a more accurate assessment of the original "clean" signal and improves analysis results. The implementation of a noise reduction methodology for the Modal Distribution Method (MDM) is reported here. The spectral subtraction method is a popular broadband noise reduction technique used in speech signal processing. Its basic principle is to subtract the magnitude of the noise from the total noisy signal in the frequency domain. The underlying assumption of the method is that noise is additive and uncorrelated with the signal. In speech signal processing, noise can be measured when there is no signal. In the MDM, however, the magnitude of the noise profile can be estimated only from the magnitude of the Power Spectral Density (PSD) at higher frequencies than the frequency range of the true signal associated with structural vibrations under the additional assumption of white noise. The implementation of the spectral subtraction method to MDM may decrease the energy of the individual mode. In this work, a modification of the spectral subtraction method is introduced that enables the conservation of the energies of individual modes. The main difference is that any (negative) bars with a height below zero after subtraction are set to the absolute value of their height. Both noise reduction methods are implemented in the MDM, and an application example is presented that demonstrates its effectiveness when used with a signal corrupted by noise.

Optimal sensor placement for health monitoring of high-rise structure based on collaborative-climb monkey algorithm

  • Yi, Ting-Hua;Zhou, Guang-Dong;Li, Hong-Nan;Zhang, Xu-Dong
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.305-317
    • /
    • 2015
  • Optimal sensor placement (OSP) is an integral component in the design of an effective structural health monitoring (SHM) system. This paper describes the implementation of a novel collaborative-climb monkey algorithm (CMA), which combines the artificial fish swarm algorithm (AFSA) with the monkey algorithm (MA), as a strategy for the optimal placement of a predefined number of sensors. Different from the original MA, the dual-structure coding method is adopted for the representation of design variables. The collaborative-climb process that can make the full use of the monkeys' experiences to guide the movement is proposed and incorporated in the CMA to speed up the search efficiency of the algorithm. The effectiveness of the proposed algorithm is demonstrated by a numerical example with a high-rise structure. The results show that the proposed CMA algorithm can provide a robust design for sensor networks, which exhibits superior convergence characteristics when compared to the original MA using the dual-structure coding method.

Spatio-temporal protocol for power-efficient acquisition wireless sensors based SHM

  • Bogdanovic, Nikola;Ampeliotis, Dimitris;Berberidis, Kostas;Casciat, Fabio;Plata-Chaves, Jorge
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.1-16
    • /
    • 2014
  • In this work, we address the so-called sensor reachback problem for Wireless Sensor Networks, which consists in collecting the measurements acquired by a large number of sensor nodes into a sink node which has major computational and power capabilities. Focused on applications such as Structural Health Monitoring, we propose a cooperative communication protocol that exploits the spatio-temporal correlations of the sensor measurements in order to save energy when transmitting the information to the sink node in a non-stationary environment. In addition to cooperative communications, the protocol is based on two well-studied adaptive filtering techniques, Least Mean Squares and Recursive Least Squares, which trade off computational complexity and reduction in the number of transmissions to the sink node. Finally, experiments with real acceleration measurements, obtained from the Canton Tower in China, are included to show the effectiveness of the proposed method.

Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses

  • Nguyen, Tuan-Cuong;Huynh, Thanh-Canh;Yi, Jin-Hak;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.385-403
    • /
    • 2017
  • In recent years, the wind energy has played an increasingly important role in national energy sector of many countries. To harvest more electric power, the wind turbine (WT) tower structure becomes physically larger, which may cause more risks during long-term operation. Associated with the great development of WT projects, the number of accidents related to large-scaled WT has also been increased. Therefore, a structural health monitoring (SHM) system for WT structures is needed to ensure their safety and serviceability during operational time. The objective of this study is to develop a hybrid damage detection method for WT tower structures by measuring vibration and impedance responses. To achieve the objective, the following approaches are implemented. Firstly, a hybrid damage detection scheme which combines vibration-based and impedance-based methods is proposed as a sequential process in three stages. Secondly, a series of vibration and impedance tests are conducted on a lab-scaled model of the WT structure in which a set of bolt-loosening cases is simulated for the segmental joints. Finally, the feasibility of the proposed hybrid damage detection method is experimentally evaluated via its performance during the damage detection process in the tested model.