• Title/Summary/Keyword: SHM (Structural Health Monitoring)

Search Result 314, Processing Time 0.022 seconds

A Method of Lamb-Wave Modes Decomposition for Structural Health Monitoring (구조물 건전성 모니터링을 위한 Lamb파 모드 구별법)

  • Jun, Yong-Ju;Park, Il-Wook;Lee, U-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.887-895
    • /
    • 2012
  • Lamb waves have received a great attention in the structural health monitoring (SHM) societies because they can propagate over relatively large distances in wave guides such as thin plates and shells. The time-of-flights of Lamb waves can be used to detect damages in a wave guide. However, due to the inherent dispersive and multi-mode characteristics of Lamb waves, one must decompose the Lamb wave modes into the symmetric and anti-symmetric modes for SHM applications. Thus, this paper proposes a decomposition method for the two-mode Lamb waves based on two rules: the group velocity ratio rule and the mode amplitude ratio rule. The group velocity ratio rule means that the ratio of the group velocities of fundamental symmetric and anti-symmetric modes is constant, while the mode amplitude ratio rule means that the magnitude of the fundamental symmetric modes of all measured response signals should be always larger than those of the anti-symmetric mode once the input signal is applied so that the magnitude of fundamental symmetric mode of excited Lamb-wave is larger than that of anti-symmetric mode, and vice versa. The proposed method is verified through the experiments ducted for an aluminum plate specimen.

Cointegration based modeling and anomaly detection approaches using monitoring data of a suspension bridge

  • Ziyuan Fan;Qiao Huang;Yuan Ren;Qiaowei Ye;Weijie Chang;Yichao Wang
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.183-197
    • /
    • 2023
  • For long-span bridges with a structural health monitoring (SHM) system, environmental temperature-driven responses are proved to be a main component in measurements. However, anomalous structural behavior may be hidden incomplicated recorded data. In order to receive reliable assessment of structural performance, it is important to study therelationship between temperature and monitoring data. This paper presents an application of the cointegration based methodology to detect anomalies that may be masked by temperature effects and then forecast the temperature-induced deflection (TID) of long-span suspension bridges. Firstly, temperature effects on girder deflection are analyzed with fieldmeasured data of a suspension bridge. Subsequently, the cointegration testing procedure is conducted. A threshold-based anomaly detection framework that eliminates the influence of environmental temperature is also proposed. The cointegrated residual series is extracted as the index to monitor anomaly events in bridges. Then, wavelet separation method is used to obtain TIDs from recorded data. Combining cointegration theory with autoregressive moving average (ARMA) model, TIDs for longspan bridges are modeled and forecasted. Finally, in-situ measurements of Xihoumen Bridge are adopted as an example to demonstrate the effectiveness of the cointegration based approach. In conclusion, the proposed method is practical for actual structures which ensures the efficient management and maintenance based on monitoring data.

Performance assessment of bridges using short-period structural health monitoring system: Sungsu bridge case study

  • Kaloop, Mosbeh R.;Elsharawy, Mohamed;Abdelwahed, Basem;Hu, Jong Wan;Kim, Dongwook
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.667-680
    • /
    • 2020
  • This study aims at reporting a systematic procedure for evaluating the static and dynamic structural performance of steel bridges based on a short-period structural health monitoring measurement. Sungsu bridge located in Korea is considered as a case study presenting the most recent tests carried out to examine the bridge condition. Short-period measurements of Structural Health Monitoring (SHM) system were used during the bridge testing phase. A novel symmetry index is introduced using statistical analyses of deflection and strain measurements. Frequency Domain Decomposition (FDD) is implemented to the strain measurements to estimate the bridge mode shapes and damping ratios. Furthermore, Markov Chain Monte Carlo (MCMC) is also implemented to examine the reliability of bridge performance while ambient design trucks are in static or moving at different speeds. Strain, displacement and acceleration were measured at selected locations on the bridge. The results show that the symmetry index can be an efficient and useful measure in assessing the steel bridge performance. The results from the used method reveal that the performance of the Sungsu bridge is safe under operational conditions.

A Study on Self-Healing Bolted Joints using Shape Memory Alloy (형상기억합금을 이용한 자가치유 볼트접합부 시스템에 관한 연구)

  • Chang, Ha-Joo;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.629-636
    • /
    • 2011
  • This paper describes the smart structural system that uses smart materials for real-time monitoring and active control of bolted joints in steel structures. The impedance-based structural health monitoring (SHM) techniques, which utilize the electro-mechanical coupling property of piezoelectric materials, was used to detect loose bolts in bolted joints. By monitoring the measured electrical impedance and comparing it with the measured baseline, a bolt loosening damage was detected. The damage was evaluated quantitatively using the damage metrics in conductance signature with respect to the healthy states. When loosening damage was detected in the bolted joint, the external heater actuated the shape memory alloy (SMA) washer. Then the heated SMA washer expanded axially and adjusted the bolt tension to restore the lost torque. An experiment was conducted by integrating the piezoelectric-material-based SHM function and the SMA-based active control function on a bolted joint, after which the performance of thesmart self-healing joint system was investigated.

Information entropy based algorithm of sensor placement optimization for structural damage detection

  • Ye, S.Q.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.443-458
    • /
    • 2012
  • The structural health monitoring (SHM) benchmark study on optimal sensor placement problem for the instrumented Canton Tower has been launched. It follows the success of the modal identification and model updating for the Canton Tower in the previous benchmark study, and focuses on the optimal placement of vibration sensors (accelerometers) in the interest of bettering the SHM system. In this paper, the sensor placement problem for the Canton Tower and the benchmark model for this study are first detailed. Then an information entropy based sensor placement method with the purpose of damage detection is proposed and applied to the benchmark problem. The procedure that will be implemented for structural damage detection using the data obtained from the optimal sensor placement strategy is introduced and the information on structural damage is specified. The information entropy based method is applied to measure the uncertainties throughout the damage detection process with the use of the obtained data. Accordingly, a multi-objective optimal problem in terms of sensor placement is formulated. The optimal solution is determined as the one that provides equally most informative data for all objectives, and thus the data obtained is most informative for structural damage detection. To validate the effectiveness of the optimally determined sensor placement, damage detection is performed on different damage scenarios of the benchmark model using the noise-free and noise-corrupted measured information, respectively. The results show that in comparison with the existing in-service sensor deployment on the structure, the optimally determined one is capable of further enhancing the capability of damage detection.

Comparison of various structural damage tracking techniques based on experimental data

  • Huang, Hongwei;Yang, Jann N.;Zhou, Li
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.1057-1077
    • /
    • 2010
  • An early detection of structural damages is critical for the decision making of repair and replacement maintenance in order to guarantee a specified structural reliability. Consequently, the structural damage detection, based on vibration data measured from the structural health monitoring (SHM) system, has received considerable attention recently. The traditional time-domain analysis techniques, such as the least square estimation (LSE) method and the extended Kalman filter (EKF) approach, require that all the external excitations (inputs) be available, which may not be the case for some SHM systems. Recently, these two approaches have been extended to cover the general case where some of the external excitations (inputs) are not measured, referred to as the adaptive LSE with unknown inputs (ALSE-UI) and the adaptive EKF with unknown inputs (AEKF-UI). Also, new analysis methods, referred to as the adaptive sequential non-linear least-square estimation with unknown inputs and unknown outputs (ASNLSE-UI-UO) and the adaptive quadratic sum-squares error with unknown inputs (AQSSE-UI), have been proposed for the damage tracking of structures when some of the acceleration responses are not measured and the external excitations are not available. In this paper, these newly proposed analysis methods will be compared in terms of accuracy, convergence and efficiency, for damage identification of structures based on experimental data obtained through a series of laboratory tests using a scaled 3-story building model with white noise excitations. The capability of the ALSE-UI, AEKF-UI, ASNLSE-UI-UO and AQSSE-UI approaches in tracking the structural damages will be demonstrated and compared.

Structural monitoring of movable bridge mechanical components for maintenance decision-making

  • Gul, Mustafa;Dumlupinar, Taha;Hattori, Hiroshi;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.249-271
    • /
    • 2014
  • This paper presents a unique study of Structural Health Monitoring (SHM) for the maintenance decision making about a real life movable bridge. The mechanical components of movable bridges are maintained on a scheduled basis. However, it is desired to have a condition-based maintenance by taking advantage of SHM. The main objective is to track the operation of a gearbox and a rack-pinion/open gear assembly, which are critical parts of bascule type movable bridges. Maintenance needs that may lead to major damage to these components needs to be identified and diagnosed timely since an early detection of faults may help avoid unexpected bridge closures or costly repairs. The fault prediction of the gearbox and rack-pinion/open gear is carried out using two types of Artificial Neural Networks (ANNs): 1) Multi-Layer Perceptron Neural Networks (MLP-NNs) and 2) Fuzzy Neural Networks (FNNs). Monitoring data is collected during regular opening and closing of the bridge as well as during artificially induced reversible damage conditions. Several statistical parameters are extracted from the time-domain vibration signals as characteristic features to be fed to the ANNs for constructing the MLP-NNs and FNNs independently. The required training and testing sets are obtained by processing the acceleration data for both damaged and undamaged condition of the aforementioned mechanical components. The performances of the developed ANNs are first evaluated using unseen test sets. Second, the selected networks are used for long-term condition evaluation of the rack-pinion/open gear of the movable bridge. It is shown that the vibration monitoring data with selected statistical parameters and particular network architectures give successful results to predict the undamaged and damaged condition of the bridge. It is also observed that the MLP-NNs performed better than the FNNs in the presented case. The successful results indicate that ANNs are promising tools for maintenance monitoring of movable bridge components and it is also shown that the ANN results can be employed in simple approach for day-to-day operation and maintenance of movable bridges.

SVR model reconstruction for the reliability of FBG sensor network based on the CFRP impact monitoring

  • Zhang, Xiaoli;Liang, Dakai;Zeng, Jie;Lu, Jiyun
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.145-158
    • /
    • 2014
  • The objective of this study is to improve the survivability and reliability of the FBG sensor network in the structural health monitoring (SHM) system. Therefore, a model reconstruction soft computing recognition algorithm based on support vector regression (SVR) is proposed to achieve the high reliability of the FBG sensor network, and the grid search algorithm is used to optimize the parameters of SVR model. Furthermore, in order to demonstrate the effectiveness of the proposed model reconstruction algorithm, a SHM system based on an eight-point fiber Bragg grating (FBG) sensor network is designed to monitor the foreign-object low velocity impact of a CFRP composite plate. Simultaneously, some sensors data are neglected to simulate different kinds of FBG sensor network failure modes, the predicting results are compared with non-reconstruction for the same failure mode. The comparative results indicate that the performance of the model reconstruction recognition algorithm based on SVR has more excellence than that of non-reconstruction, and the model reconstruction algorithm almost keeps the consistent predicting accuracy when no sensor, one sensor and two sensors are invalid in the FBG sensor network, thus the reliability is improved when there are FBG sensors are invalid in the structural health monitoring system.

Solar-powered multi-scale sensor node on Imote2 platform for hybrid SHM in cable-stayed bridge

  • Ho, Duc-Duy;Lee, Po-Young;Nguyen, Khac-Duy;Hong, Dong-Soo;Lee, So-Young;Kim, Jeong-Tae;Shin, Sung-Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.145-164
    • /
    • 2012
  • In this paper, solar-powered, multi-scale, vibration-impedance sensor node on Imote2 platform is presented for hybrid structural health monitoring (SHM) in cable-stayed bridge. In order to achieve the objective, the following approaches are proposed. Firstly, vibration- and impedance-based hybrid SHM methods are briefly described. Secondly, the multi-scale vibration and impedance sensor node on Imote2-platform is presented on the design of hardware components and embedded software for vibration- and impedance-based SHM. In this approach, a solar-powered energy harvesting is implemented for autonomous operation of the smart sensor nodes. Finally, the feasibility and practicality of the smart sensor-based SHM system is evaluated on a full-scale cable-stayed bridge, Hwamyung Bridge in Korea. Successful level of wireless communication and solar-power supply for smart sensor nodes are verified. Also, vibration and impedance responses measured from the target bridge which experiences various weather conditions are examined for the robust long-term monitoring capability of the smart sensor system.

Multiscale features and information extraction of online strain for long-span bridges

  • Wu, Baijian;Li, Zhaoxia;Chan, Tommy H.T.;Wang, Ying
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.679-697
    • /
    • 2014
  • The strain data acquired from structural health monitoring (SHM) systems play an important role in the state monitoring and damage identification of bridges. Due to the environmental complexity of civil structures, a better understanding of the actual strain data will help filling the gap between theoretical/laboratorial results and practical application. In the study, the multi-scale features of strain response are first revealed after abundant investigations on the actual data from two typical long-span bridges. Results show that, strain types at the three typical temporal scales of $10^5$, $10^2$ and $10^0$ sec are caused by temperature change, trains and heavy trucks, and have their respective cut-off frequency in the order of $10^{-2}$, $10^{-1}$ and $10^0$ Hz. Multi-resolution analysis and wavelet shrinkage are applied for separating and extracting these strain types. During the above process, two methods for determining thresholds are introduced. The excellent ability of wavelet transform on simultaneously time-frequency analysis leads to an effective information extraction. After extraction, the strain data will be compressed at an attractive ratio. This research may contribute to a further understanding of actual strain data of long-span bridges; also, the proposed extracting methodology is applicable on actual SHM systems.