• 제목/요약/키워드: SH-SY5Y neuroblastoma cell

검색결과 96건 처리시간 0.03초

산화적 스트레스에 대한 천마 추출물의 신경세포 보호 및 항산화 효과 (Neuroprotective and Anti-oxidant Effects of Gastrodiae Rhizoma Extracts against Hydrogen Peroxide-induced Cytotoxicity in SH-SY5Y Cells)

  • 권강범;김하림;김예슬;박은희;최한별;류도곤
    • 동의생리병리학회지
    • /
    • 제36권6호
    • /
    • pp.209-212
    • /
    • 2022
  • We recently reported that Gastrodia elata extracts (GEE) had an effects to protect against lipopolysaccharide-induced cognitive impairment in vivo model. In this study, we investigated the neuroprotective effects and the mechanism of action of GEE in hydrogen peroxide (H2O2)-induced cell death of SH-SY5Y human neuroblastoma cell. The SH-SY5Y cells were divided into five groups, including control(non-treated group), 100 μM H2O2, 100, 200, 500 ㎍/㎖ GEE+ 100 μM H2O2 groups. Pre- and co-treatment with GEE prevented cell death induced by 100 μM H2O2 for 24 h in SH-SY5Y cells. Our findings also showed that anti-oxidants enzymes (Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase) were up-regulated by 100 μM H2O2. But GEE suppressed H2O2-induced anti-oxidants enzymes decrease in a dose-dependent manner. Treatment with GEE also inhibited phosphorylation of eukaryotic initiation factor-2α (eIF-2α) and p38 by H2O2. Taken together, the neuroprotective effects of GEE in terms of recovery of antioxidant enzymes expression, down-regulation of eIF-2α and p38 phosphorylation, and inhibition of cell death are associated with reduced oxidative stress in SH-SY5Y cells.

베타아밀로이드 유도성 SH-SY5Y 세포독성에서 단천환(丹川丸)의 보호효과 (Danchunhwan Protects the Cytotoxicity of Beta-amyloid in SH-SY5Y Neuroblastoma Cells)

  • 유봉선;김진경;남상규;박찬희;소홍섭
    • 동의생리병리학회지
    • /
    • 제20권6호
    • /
    • pp.1516-1523
    • /
    • 2006
  • The water extract of Danchunhwan(DCH) has been traditionally used for treatment of dementia damage in oriental medicine. However, little is known about the mechanism by which the water extract of DCH rescues cells from neurodegenerative disease such as Alzheimer's disease. This study was designed to investigate the protective mechanisms of DCH on ${\beta}$-amyloid or $H_2O_2$-induced cytotoxicity in SH-SY5Y neuronblastoma cells. ${\beta}$-amyloid and $H_2O_2$ markedly decreased the viability of SH-SY5Y cells, which was characterized with apparent apoptotic features such as membrane blebbing as well as fragmentation of genomic DNA and nuclei. However, the water extract of DCH significantly reduced both ${\beta}$-amyloid or $H_2O_2$-induced cell death and apoptotic characteristics through reduction of intracellular peroxide generation. Also, the water extract of DCH prevented prevented the mitochondrial dysfunction including the disruption of mitochondria membrane permeability transition (MPT) and the perturbation in Bcl-2 family protein expressions in $H_2O_2$-treated SH-SY5Y cells.

Differentially Expressed Genes by Methylmercury in Neuroblastoma cell line using suppression subtractive hybridization (SSH) and cDNA Microarray

  • Kim, Youn-Jung;Chang, Suk-Tai;Yun, Hye-Jung;Ryu, Jae-Chun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 춘계학술대회
    • /
    • pp.187-187
    • /
    • 2003
  • Methylmercury (MeHg), one of the heavy metal compounds, can cause severe damage to the central nervous system in humans. Many reports have shown that MeHg is poisonous to human body through contaminated foods and has released into the environment. Despite many studies on the pathogenesis of MeHg-induced central neuropathy, no useful mechanism of toxicity has been established so far. In this study, two methods, cDNA Microarray and SSH, were performed to assess the expression profile against MeHg and to identify differentially expressed genes by MeHg in neuroblastoma cell line. TwinChip Human-8K (Digital Genomics) was used with total RNA from SH-SY5Y (human neuroblastoma cell line) treated with solvent (DMSO) and 6.25 uM (IC50) MeHg. And we performed forward and reverse SSH method on mRNA derived from SH-SY5Y treated with DMSO and MeHg (6.25 uM). Differentially expressed cDNA clones were sequenced and were screened by dot blot and ribonuclease protection assay to confirm that individual clones indeed represent differentially expressed genes. These sequences were identified by BLAST homology search to known genes or expressed sequence tags (ESTs). Analysis of these sequences may provide an insight into the biological effects of MeHg in the pathogenesis of neurodegenerative disease and a possibility to develop more efficient and exact monitoring system of heavy metals as environmental pollutants.

  • PDF

신경아세포종에 대한 팔보회춘탕(八寶廻春湯)의 항암 효과 (Anti-cancer Effects of Palbohoichoon-tang on Neuroblastoma Cells)

  • 안정환;조문영;우찬;신용진;신선호
    • 대한한방내과학회지
    • /
    • 제35권1호
    • /
    • pp.79-91
    • /
    • 2014
  • Objectives : To investigate the anti-cancer effect of Palbohoichoon-tang (PBHCT) extracts. Methods : The cell viability was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MMT) assay and cell morphological changes were microscopically analyzed after staining with $10{\mu}M$ 2-[4-amidinophenyl]-6-indolecarbamidine dihydrochloride (DAPI) and TUNEL. We also analyzed expression of Bcl2, $Bcl_{xL}$, Bax, procaspase-3, procaspase-9, and procyclic acidic repetitive protein (PARP) by western blot method. Results : Observations showed that PBHCT induced the apoptotic cell death proved by increased sub-G1 phase cell population, apoptotic body formation and chromatin condensation. Western blot analysis of total cell lysates revealed that the PBHCT induced cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP). In addition, PBHCT dose-dependently increased the activity of caspase-9, caspase-3 and PARP-1. Furthermore, PBHCT reduced anti-apoptotic Bcl2, $Bcl_{xL}$ expression which contributed to the loss of mitochondrial membrane potential and the activations of caspase-9 and caspase-3. Conclusions : These findings suggest that PBHCT exerts anti-cancer effects on human neuroblastoma SH-SY5Y cells by inducing apoptotic death via down-regulation of anti-apoptotic proteins such as Bcl2 and $Bcl_{xL}$, up-regulation of pro-apoptotic proteins such as Bax, and activation of caspase cascades and PARP-1.

키누레닌 대사산물에 의한 신경세포 손상에 대한 Magnolol의 보호효과에 대한 연구 (Magnolol Attenuates Neuronal Cell Death Induced by Kynurenine Metabolite)

  • 이창욱;이현정;김도희;장영미;이상형;정윤화;김대진;정윤희;김경용;김성수;이원복
    • 한국약용작물학회지
    • /
    • 제17권2호
    • /
    • pp.145-150
    • /
    • 2009
  • This study investigated the protective roles and mechanism of magnolol, from the stem bark of Magnolia officinalis against potential neurotoxin 3-hydroxykynurenine (3-HK)-induced neuronal cell death. For the evaluation of protective role of magnolol, we examined cell viability, apoptotic nuclei, change of mitochondrial membrane potential and caspase activity in human neuroblastoma SH-SY5Y cells. It was found that 3-HK induces neuronal cell death in the human neuroblastoma SH-SY5Y cell line. The reduced cell viability produced characteristic features such as cell shrinkages, plasma membrane blebbing, chromatin condensation, and nuclear fragmentation. The cells treated with 3-HK showed an increase in the concentration of reactive oxygen species (ROS) as well as in caspase activity. In addition, both are involved in the 3-HK-induced apoptosis. Magnolol attenuated the cell viability reduction by 3-HK in both a dose- and time-dependent manner. Optical microscopy showed that magnolol inhibited the cell morphological features in the 3-HK-treated cells. Furthermore, the increase in the ROS concentration and the caspase activities by 3-HK were also attenuated by magnolol. These results showed that magnolol has a protective effect on the 3-HK induced cell death by inhibiting ROS production and caspase activity.

Protective Role of Corticosterone against Hydrogen Peroxide-Induced Neuronal Cell Death in SH-SY5Y Cells

  • Lee, Chan;Jang, Jung-Hee;Park, Gyu Hwan
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.570-575
    • /
    • 2022
  • Stress breaks body balance, which can cause diverse physiological disorders and worsen preexisting diseases. However, recent studies have reported that controllable stress and overcoming from stress reinforce resilience to resist against more intense stress afterwards. In this study, we investigated the protective effect of corticosterone (CORT), a representative stress hormone against hydrogen peroxide (H2O2)-induced neuronal cell death and its underlying molecular mechanism in SH-SY5Y cells, a human neuroblastoma cell line. The decreased cell viability by H2O2 was effectively restored by the pretreatment with low concentration of CORT (0.03 μM for 72 h) in the cells. H2O2-increased expression of apoptotic markers such as PUMA and Bim was decreased by CORT pretreatment. Furthermore, pretreatment of CORT attenuated H2O2-mediated oxidative damages by upregulation of antioxidant enzymes via activation of nuclear factor erythroid 2-related factor 2 (Nrf2). These findings suggest that low concentration of CORT with eustressed condition enhances intracellular self-defense against H2O2-mediated oxidative cell death, suggesting a role of low concentration of CORT as one of key molecules for resilience and neuronal cell survival.

Effect of Graphene on Growth of Neuroblastoma Cells

  • Park, Hye-Bin;Nam, Hyo-Geun;Oh, Hong-Gi;Kim, Jung-Hyun;Kim, Chang-Man;Song, Kwang-Soup;Jhee, Kwang-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.274-277
    • /
    • 2013
  • The unique properties of graphene have earned much interest in the fields of materials science and condensedmatter physics in recent years. However, the biological applications of graphene remain largely unexplored. In this study, we investigate the cell culture conditions, which are exposed to graphene onto glass and $SiO_2$/Si using human nerve cell line, SH-SY5Y. Cell viability was 84% when cultured on glass and $SiO_2$/Si coated with graphene as compared to culturing on polystyrene surface. Fluorescence data showed that the presence of graphene did not influence cell morphology. These findings suggest that graphene may be used for biological applications.

Identification of Genes Associated with Early and Late Response of Methylmercury in Human Neuroblastoma Cell Line

  • Kim, Youn-Jung;Kim, Mi-Soon;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.164-169
    • /
    • 2008
  • Methylmercury (MeHg) is known to have devastating effects on the mammalian nervous system. In order to characterize the mechanism of MeHg-induced neurotoxicity, we investigated the analysis of transcriptional profiles on human 8k cDNA microarray by treatment of $1.4{\mu}M$ MeHg at 3, 12, 24 and 48h in human neuroblastoma SH-SY5Y cell line. Some of the identified genes by MeHg treatment were significant at early time points (3h), while that of others was at late time points (48h). The early response genes that may represent those involved directly in the MeHg response included pantothenate kinase 3, a kinase (PRKA) anchor protein (yotiao) 9, neurotrophic tyrosine kinase, receptor, type 2 gene, associated with NMDA receptor activity regulation or perturbations of central nervous system homeostasis. Also, when SH-SY5Y cells were subjected to a longer exposure (48h), a relative increase was noted in a gene, glutamine-fructose-6-phosphate transaminase 1, reported that overexpression of this gene may lead to the increased resistance to MeHg. To confirm the alteration of these genes in cultured neurons, we then applied real time-RT PCR with SYBR green. Thus, this result suggests that a neurotoxic effect of the MeHg might be ascribed that MeHg alters neuronal receptor regulation or homeostasis of neuronal cells in the early phase. However, in the late phase, it protects cells from neurotoxic effects of MeHg.

SH-SY5Y 세포주에서 하고초, 금은화, 황금 에탄올 추출물의 6-OHDA로 유도된 산화적 손상에 미치는 영향 (The Effect of Ethanol Extracts of Herba Prunellae, Flos Lonicerae and Radix Scutellaria on 6-OHDA Induced Oxidative Damage in the SH-SY5Y Cell Line)

  • 민관식;김수영;김민우;이기상
    • 대한한방내과학회지
    • /
    • 제32권4호
    • /
    • pp.530-541
    • /
    • 2011
  • Objectives : Categorized as 'cheongyeol' herbs, Herba Prunellae, Flos Lonicerae and Radix Scutellaria have been proven to have effect on degenerative brain disease, cerebrovascular disease and brain tumor because of their anti inflammation, antioxidant, or anticancer effects. In this study, we studied activity against reactive oxygen species and anti inflammation effect of these three 'Cheongyeol' herbs. Methods : We measured each herb's yield of ethanol extracts, phenolic contents and activities against DPPH, hydroxyl radical and superoxide anion. Also through 6-hydroxydopamine (6-OHDA) induced oxidative damage in SH-SY5Y human neuroblastoma cell line, we measured antioxidant effect and NO activity of the three herbs. From the three herbs, we chose Prunella Herba, which showed the highest antioxidant effect, and studied its cell survival rate and anti inflammation effect through COX-2 and iNOS. Results : All three herbs showed significant results, and especially Prunella Herba showed significant effect on phenol contents, antioxidant effect on various active oxygen and antioxidant, and anti inflammation effect through cell line. Conclusions : Further study of the origin concept of 'cheongyeol' and research into specific mechanisms and role in treatment of cranial nerve disease, seems warranted.

흰쥐 선조체에서 6-OHDA-유도 도파민 고갈 및 SH-SY5Y 세포주에서 6-OHDA-유도 산화적 스트레스에 대한 l-Deprenyl의 신경 보호효과 (Neuroprotective Effect of l-Deprenyl Against 6-OHDA-Induced Dopamine Depletion in Rat Striatum and 6-OHDA-Induced Oxidative Stress in SH-SY5Y Cells)

  • 김은미;최신규;이경림;김화정
    • 약학회지
    • /
    • 제49권4호
    • /
    • pp.355-364
    • /
    • 2005
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has long been used to form a Parkinson's disease (PD) model by inducing the lesion in catecholaminergic pathways, particularly the nigrostriatal dopamine (DA) pathway. Whereas l-deprenyl, a selective inhibitor of monoamine oxidase (MAO) type B, is now widely used in the treatment of PD, the precise action mechanism of the drug remains elusive. In this study, we investigated whether l-deprenyl shows protective effect against the DA depletion induced by 6-OHDA in rat brain, and against 6-OHDA-induced neurotoxicity and oxidative stress in catecholaminergic neuroblastoma SH-SY5Y cells that are known to lack MAO-B activity. Pretreatment of l-deprenyl significantly enhanced the striatal DA, 3,4-dihydroxyphenylacetic acid, homovanilic acid, and 3-methoxytyramine levels compared to the untreated 6-OHDA-lesioned rat, indicating that l-deprenyl pretreatment prevents 6-OHDA-induced depletion of not only striatal dopamine but also its metabolites. Treatment of 6-OHDA for 24hrs decreased the cell viability and increase the generation of ROS in dose-dependent manners. We further investigated whether caspase activity is involved in the action of l-deprenyl. Treatment of l-deprenyl $(0.1\~100{\mu}M)$ did not produce any changes in 6-OHDA-induced cleavage of poly (ADP-ridose) polymerase in SH-SY5Y cells. Our results suggest that the neuroprotective effect of l-deprenyl against 6-OHDA is due to its increased scavenger activity, but independent of inhibition of MAO-B or caspase-3 activation.