• 제목/요약/키워드: SH-SY5Y neuroblastoma

검색결과 120건 처리시간 0.019초

Neuroprotective Effect of the n-Hexane Extracts of Laurus nobilis L. in Models of Parkinson's Disease

  • Ham, Ah-Rom;Shin, Jong-Heon;Oh, Ki-Bong;Lee, Sung-Jin;Nam, Kung-Woo;Koo, Uk;Kim, Kyeong-Ho;Mar, Woong-Chon
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.118-125
    • /
    • 2011
  • Free radical scavenging and antioxidants have attracted attention as a way to prevent the progression of Parkinson's disease (PD). This study was carried out to investigate the effects of n-hexane fraction from Laurus nobilis L. (Lauraceae) leaves (HFL) on dopamine (DA)-induced intracellular reactive oxygen species (ROS) production and apoptosis in human neuroblastoma SH-SY5Y cells. Compared with apomorphine (APO, $IC_{50}=18.1\;{\mu}M$) as a positive control, the HFL $IC_{50}$ value for DA-induced apoptosis was $3.0\;{\mu}g/ml$, and two major compounds from HFL, costunolide and dehydrocostus lactone, were $7.3\;{\mu}M$ and $3.6\;{\mu}M$, respectively. HFL and these major compounds significantly inhibited ROS generation in DA-induced SH-SY5Y cells. A rodent 6-hydroxydopamine (6-OHDA) model of PD was employed to investigate the potential neuroprotective effects of HFL in vivo. 6-OHDA was injected into the substantia nigra of young adult rats and an immunohistochemical analysis was conducted to quantitate the tyrosine hydroxylase (TH)-positive neurons. HFL significantly inhibited 6-OHDA-induced TH-positive cell loss in the substantia nigra and also reduced DA induced $\alpha$-synuclein (SYN) formation in SH-SY5Y cells. These results indicate that HFL may have neuroprotective effects against DA-induced in vitro and in vivo models of PD.

Transcriptional Profile and Cellular Effects on Time Course & Doses Treatment of Methylmercury using Human cDNA Microarray System

  • Kim, Youn-Jung;Yun, Hye-Jung;Kim, Eun-Young;Ryu, Jae-Chun
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 추계국제학술대회
    • /
    • pp.176-176
    • /
    • 2003
  • Methylmercury is known to have devastating effects on the mammalian nervous system. When human neuroblastoma SH-SY5Y cells were treated with methylmercury at sublethal concentrations (6.25 uM), up-regulated genes (39) & down-regulated genes (19) were identified by human 8k cDNA microarray. These genes are related with microtubule process, signal transduction pathway and cell death (apoptosis), Apoptosis-associated genes, HSP70, CDK inhibitor 1, FOS-like antigen were up-regulated and microtubule related genes like villin and dynein down-regultaed. To confirm the presence of apoptosis in cultured SH-SY5Y cells treated 6.25 and 1 uM methylmercury, we applied Annexin V-FITC assay followed by flow cytometric measurements after 6 and 24h. Studies on transcriptional and molecular effect by methylmercury may provide an insight into the neurotoxic effects of methylmercury in human neuronal cells and a possibility to develop more efficient and exact monitoring system of heavy metals as ubiquitous environmental pollutants.

  • PDF

Effect of Graphene on Growth of Neuroblastoma Cells

  • Park, Hye-Bin;Nam, Hyo-Geun;Oh, Hong-Gi;Kim, Jung-Hyun;Kim, Chang-Man;Song, Kwang-Soup;Jhee, Kwang-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.274-277
    • /
    • 2013
  • The unique properties of graphene have earned much interest in the fields of materials science and condensedmatter physics in recent years. However, the biological applications of graphene remain largely unexplored. In this study, we investigate the cell culture conditions, which are exposed to graphene onto glass and $SiO_2$/Si using human nerve cell line, SH-SY5Y. Cell viability was 84% when cultured on glass and $SiO_2$/Si coated with graphene as compared to culturing on polystyrene surface. Fluorescence data showed that the presence of graphene did not influence cell morphology. These findings suggest that graphene may be used for biological applications.

A novel BACE inhibitor isolated from Eisenia bicyclis exhibits neuroprotective activity against β-amyloid toxicity

  • Lee, Jung Kwon;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • 제21권12호
    • /
    • pp.38.1-38.9
    • /
    • 2018
  • Alzheimer's disease (AD) is a disturbing and advanced neurodegenerative disease and is characterized pathologically by the accumulation of amyloid beta ($A{\beta}$) and the hyperphosphorylation of tau proteins in the brain. The deposition of $A{\beta}$ aggregates triggers synaptic dysfunction, and neurodegeneration, which lead to cognitive disorders. Here, we found that FF isolated from an eatable perennial brown seaweed E.bicyclis protect against $A{\beta}$-induced neurotoxicity in neuroblastoma cells stably transfected with two amyloid precursor protein (APP) constructs: the APP695 cDNA (SH-SY5Y-APP695swe). The FF demonstrated strong inhibitory activity for ${\beta}$-secretase ($IC_{50}$ $16.1{\mu}M$) and its inhibition pattern was investigated using Lineweaver-Burk and Dixon plots, and found to be non-competitive. Then, we tested whether FF could inhibit production of $A{\beta}$ in SH-SY5Y-APP695swe. FF inhibited the production of $A{\beta}$ and soluble-APP, residue of APP from cleaved APP by ${\beta}$-secretase. Our data show that FF can inhibit the production of $A{\beta}$ and soluble-$APP{\beta}$ via inhibition of ${\beta}$-secretase activity. Taken together these results suggest that FF may be worthy of future study as an anti-AD treatment.

Protective Role of Corticosterone against Hydrogen Peroxide-Induced Neuronal Cell Death in SH-SY5Y Cells

  • Lee, Chan;Jang, Jung-Hee;Park, Gyu Hwan
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.570-575
    • /
    • 2022
  • Stress breaks body balance, which can cause diverse physiological disorders and worsen preexisting diseases. However, recent studies have reported that controllable stress and overcoming from stress reinforce resilience to resist against more intense stress afterwards. In this study, we investigated the protective effect of corticosterone (CORT), a representative stress hormone against hydrogen peroxide (H2O2)-induced neuronal cell death and its underlying molecular mechanism in SH-SY5Y cells, a human neuroblastoma cell line. The decreased cell viability by H2O2 was effectively restored by the pretreatment with low concentration of CORT (0.03 μM for 72 h) in the cells. H2O2-increased expression of apoptotic markers such as PUMA and Bim was decreased by CORT pretreatment. Furthermore, pretreatment of CORT attenuated H2O2-mediated oxidative damages by upregulation of antioxidant enzymes via activation of nuclear factor erythroid 2-related factor 2 (Nrf2). These findings suggest that low concentration of CORT with eustressed condition enhances intracellular self-defense against H2O2-mediated oxidative cell death, suggesting a role of low concentration of CORT as one of key molecules for resilience and neuronal cell survival.

Neuroprotective Effects of Heat-Killed Levilactobacillus brevis KU15152 on H2O2-Induced Oxidative Stress

  • Hyun-Ji Bock;Na-Kyoung Lee;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1189-1196
    • /
    • 2023
  • This study proposed to demonstrate the neuroprotective effects of heat-killed Levilactobacillus brevis KU15152. Heat-killed L. brevis KU15152 showed antioxidant activity similar to that of Lacticaseibacillus rhamnosus GG, in terms of radical scavenging activity. To evaluate the neuroprotective effects, conditioned medium (CM) obtained by incubating heat-killed bacteria in intestinal cells (HT-29) was used through gut-brain axis. CM from L. brevis KU15152 protected neuroblastoma cells (SH-SY5Y) against H2O2-induced oxidative stress. Pretreatment with CM significantly alleviated the morphological changes induced by H2O2. Heat-killed L. brevis KU15152 showed an increased brain-derived neurotrophic factor (BDNF) expression in HT-29 cells. L. brevis KU15152-CM remarkably downregulated the Bax/Bcl-2 ratio, while upregulating the expression of BDNF and tyrosine hydroxylase (TH) in SH-SY5Y cells. Furthermore, L. brevis KU15152-CM reduced caspase-3 activity following H2O2 treatment. In conclusion, L. brevis KU15152 can be potentially used as food materials to avoid neurodegenerative diseases.

키누레닌 대사산물에 의한 신경세포 손상에 대한 Magnolol의 보호효과에 대한 연구 (Magnolol Attenuates Neuronal Cell Death Induced by Kynurenine Metabolite)

  • 이창욱;이현정;김도희;장영미;이상형;정윤화;김대진;정윤희;김경용;김성수;이원복
    • 한국약용작물학회지
    • /
    • 제17권2호
    • /
    • pp.145-150
    • /
    • 2009
  • This study investigated the protective roles and mechanism of magnolol, from the stem bark of Magnolia officinalis against potential neurotoxin 3-hydroxykynurenine (3-HK)-induced neuronal cell death. For the evaluation of protective role of magnolol, we examined cell viability, apoptotic nuclei, change of mitochondrial membrane potential and caspase activity in human neuroblastoma SH-SY5Y cells. It was found that 3-HK induces neuronal cell death in the human neuroblastoma SH-SY5Y cell line. The reduced cell viability produced characteristic features such as cell shrinkages, plasma membrane blebbing, chromatin condensation, and nuclear fragmentation. The cells treated with 3-HK showed an increase in the concentration of reactive oxygen species (ROS) as well as in caspase activity. In addition, both are involved in the 3-HK-induced apoptosis. Magnolol attenuated the cell viability reduction by 3-HK in both a dose- and time-dependent manner. Optical microscopy showed that magnolol inhibited the cell morphological features in the 3-HK-treated cells. Furthermore, the increase in the ROS concentration and the caspase activities by 3-HK were also attenuated by magnolol. These results showed that magnolol has a protective effect on the 3-HK induced cell death by inhibiting ROS production and caspase activity.

Preventive effects of crocin on neuronal damages induced by D-galactose through AGEs and oxidative stress in human neuroblastoma cells (SH-SY5Y)

  • Heidari, Somaye;Mehri, Soghra;Shariaty, Vahidesadat;Hosseinzadeh, Hossein
    • 대한약침학회지
    • /
    • 제21권1호
    • /
    • pp.18-25
    • /
    • 2018
  • Objective: D-galactose (D-gal) is well-known agent to induce aging process. In the present study, we selected crocin, the main constituent of Crocus sativus L. (saffron), against D-gal- induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Methods: Pretreated cells with crocin ($25-500{\mu}M$, 24 h) were exposed to D-gal (25-400 mM, 48 h). The MTT assay was used for determination cell viability. Dichlorofluorescin diacetate assay (DCF-DA) and senescence associated ${\beta}$-galactosidase staining assay (SA-${\beta}$-gal) were used to evaluate the generation of reactive oxygen species and beta-galactosidase as an aging marker, respectively. Also advanced glycation end products (AGEs) expression which is known as the main mechanism of age-related diseases was measured by western blot analysis. Results: The findings of our study showed that treatment of cells with D-gal (25-400 mM) for 48h decreased cell viability concentration dependency. Reactive oxygen species (ROS) levels which are known as main factors in age-related diseases increased from $100{\pm}8%$ in control group to $132{\pm}22%$ in D-gal (200 mM) treated cells for 48h. The cytotoxic effects of D-gal decreased with 24h crocin pretreatment of cells. The cell viability at concentrations of $100{\mu}M$, $200{\mu}M$ and $500{\mu}M$ increased and ROS production decreased at concentrations of 200 and $500{\mu}M$ to $111.5{\pm}6%$ and $108{\pm}5%$, respectively. Also lysosomal biomarker of aging and carboxymethyl lysine (CML) expression as an AGE protein, significantly increased in D-gal 200 mM group after 48h incubation compare to control group. Pre-treatment of SHSY-5Y cells with crocin ($500{\mu}M$) before adding D-gal significantly reduced aging marker and CML formation. Conclusion: Treatment of SH-SY5Y cells with crocin before adding of D-gal restored aging effects of D-gal concentration dependency. These findings indicate that crocin has potent anti- aging effects through inhibition of AGEs and ROS production.

Oxidative stress-induced aberrant G9a activation disturbs RE-1-containing neuron-specific genes expression, leading to degeneration in human SH-SY5Y neuroblastoma cells

  • Kim, Ho-Tae;Ohn, Takbum;Jeong, Sin-Gu;Song, Anji;Jang, Chul Ho;Cho, Gwang-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권1호
    • /
    • pp.51-58
    • /
    • 2021
  • Oxidative stress-induced neurodegeneration is one of several etiologies underlying neurodegenerative disease. In the present study, we investigated the functional role of histone methyltransferase G9a in oxidative stress-induced degeneration in human SH-SY5Y neuroblastoma cells. Cell viability significantly decreased on H2O2 treatment; however, treatment with the G9a inhibitor BIX01294 partially attenuated this effect. The expression of neuron-specific genes also decreased in H2O2-treated cells; however, it recovered on G9a inhibition. H2O2-treated cells showed high levels of H3K9me2 (histone H3 demethylated at the lysine 9 residue), which is produced by G9a activation; BIX01294 treatment reduced aberrant activation of G9a. H3K9me2 occupancy of the RE-1 site in neuron-specific genes was significantly increased in H2O2-treated cells, whereas it was decreased in BIX01294-treated cells. The differentiation of H2O2-treated cells also recovered on G9a inhibition by BIX01294. Consistent results were observed when used another G9a inhibitor UCN0321. These results demonstrate that oxidative stress induces aberrant activation of G9a, which disturbs the expression of neuron-specific genes and progressively mediates neuronal cell death. Moreover, a G9a inhibitor can lessen aberrant G9a activity and prevent neuronal damage. G9a inhibition may therefore contribute to the prevention of oxidative stress-induced neurodegeneration.

금불초 추출물의 항산화 효과 및 산화 스트레스에 대한 신경세포 보호작용 (Antioxidant Properties and Protective Effects of Inula britannica var. chinensis Regel on Oxidative Stress-induced Neuronal Cell Damage)

  • 이나현;홍정일;김진영;장매희
    • 한국식품과학회지
    • /
    • 제41권1호
    • /
    • pp.87-92
    • /
    • 2009
  • 본 연구에서는 금불초(Inula britannica) 추출물의 항산화 효과와 ${H_2}{O_2}$로부터 유도된 SH-SY5Y 신경모세포종의 세포독성에 대한 보호능을 측정하였다. 금불초 지상부위의 70% 메탄올 추출물에 대하여 용매별로 분획을 실시하였고 핵산(Fr.H), 에틸아세테이트(Fr.EA) 및 물(Fr.W) 분획에 대하여 활성을 조사하였다. 분획 중 Fr.W의 폴리페놀/플라보노이드 함량이 가장 높았으며 Fr.W의 총 폴리페놀 함량은 $318.1{\pm}20.6{\mu}g$/mg solid로, Fr.EA 및 Fr.H와 비교하여 각각 약 2.5배, 23.1배 수준이었다. DPPH radical, ABTS radical 및 nitric oxide 소거능 등의 항산화 활성에서도 Fr.W가 가장 높은 활성을 나타내었고 Fr.H는 거의 활성을 나타내지 않았다. Fr.W는 ${H_2}{O_2}$에 의해 유도된 세포사멸에 대하여 62.5 ${\mu}g$/mL 농도에서 현저하게 세포독성을 감소시켰으며 250 ${\mu}g$/mL에서는 77.0%의 세포사멸 억제능을 보였다. Fr.EA는 보호 효과를 나타 내지 않았으며 Fr.H는 오히려 ${H_2}{O_2}$로 인한 세포 독성을 증가시키는 것으로 나타났다. 세포 내 ROS에 대한 영향으로 Fr.W 250 ${\mu}g$/mL 처리시 39.2% 세포내 ROS를 감소시켰으며 Fr.EA는 25 ${\mu}g$/mL에서 26.8%의 세포내 ROS를 소거하였다. 이러한 금불초 Fr.W의 항산화 활성은 ROS에 의해 야기되는 뇌세포 독성에 대한 보호 작용에 공헌할 수 있을 것으로 예상된다.