• 제목/요약/키워드: SGPD

검색결과 4건 처리시간 0.016초

Overexpression of the spr D Gene Encoding Strptomyces griseus Protease D Stimulates Actinorhodin Production in Streptomyces lividans

  • Choi, Si-Sun;Chi, Won-Jae;Lee, Jae-Hag;Kang, Sang-Soon;Jeong, Byeong-Chul;Hong, Soon-Kwang
    • Journal of Microbiology
    • /
    • 제39권4호
    • /
    • pp.305-313
    • /
    • 2001
  • The spr D gene encoding Strptomyces griseus protease D(SGPD); a chymotrypsin-like proteae, was cloned from Strptomyces griseus IFO13350 and sequence. Most of the amino-acid sequence deduced from the nucleotide sequence is idential to that Strptomyces griseus IMRU3499 except that one amino acid has been deleted and Trp 369 has been substituted into Cys369 in the SGPD from S. griseus IFO13350 without affecting the protease activity. The spr D gene was overexpressed in Streptomyce liv-idans TK24 as a heterologous host. Various media with different compositions were also used to max-imize the productivity of SGPD inthe heterologous host. The SGPD productivity was best when the transformant S. lividans TK24 was cultivated in R2YE medium. The relative chymotrypsin activity of the culture broth measured with an artificial chromogenic substrate, N-scuccinyl-ala-ala-pro-phe-p-nitroanilide, was 16 units/ml. A high level of SGPD was also produced in YEME and SAAM medial but it was relatively lower that in R2YE medium and negligible amounts of SGPD were produced in GYE, GAE and Benedict media. The growth of S. lividans reacted the maximum level of cell mass at days 3 and 4 of the culture, but SGPD production started in the stationary phase of cell growth and kept increase in till the 10$^{th}$ day of culture in R2YE and YEME medium, but in GYE media the productivity reached maximum level at 8days of cultivation. The introduction of the spr D gene into S. lividans TK24 triggered biosyntheis of the pigmented antibiotic , actinorhodin, which implies some protease may paly a very improtant role in secondary-metabolite formation in sStreptomyces.

  • PDF

Functional Anaylsis of sprD Gene Encoding Streptomyces griseus Protease D(SGPD) in Streptomyces griseus

  • Choi Si-Sun;Kim Joung-Hoon;Kim Jong-Hee;Kang Dae-Kyung;Kang Sang-Soon;Hong Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.312-317
    • /
    • 2006
  • The chromosomal sprD gene encoding Streptomyces griseus protease D (SGPD), a chymotrypsin-like protease, was disrupted in Streptomyces griseus by insertion of the neomysin-resistance gene. The production of chymotrypsin activity of sprD disruptant was not completely abolished, but delayed by 24 h, compared with that of wild-type strain. The aerial mycelial formation of sprD disruptant was retarded, and specifically the formation of spores was not observed in the central region of colonies. However, normal morphological development into spores was observed in the marginal region of colonies. In addition, the production of yellow pigment that might be dependent on A-factor was also decreased in the sprD disruptant, compared with that of the wild-type strain. Introduction of the sprD gene, which was placed on a high copy-numbered plasmid into S. griseus ${\Delta}sprD$, partially restored the ability of morphological development, and a significant level of sporulation was observed. When the overexpression vector for sprD, pWHM3-D, was introduced in S. griseus, there was no significant change in the chymotrypsin activity or colonial morphology, in contrast to Streptomyces lividans, indicating the presence of a tight regulation system for the overexpression of the sprD gene in S. griseus.

sprD유전자의 과발현이 Streptomyces griseus HH1의 분화에 미치는 영향 (Effect of the Overexpression of the sprD Gene Encoding Streptomyces griseus Pretense D for the Differentiation of Streptomyces griseus HH1)

  • 이재학
    • 한국식품영양학회지
    • /
    • 제15권4호
    • /
    • pp.364-369
    • /
    • 2002
  • 방선균은 토양 속에 다양하게 존재하는 미생물의 일종으로 그람 양성 진정세균으로 이차대사산물을 생산하는 시기와 포자 착생이 시작되는 세포분화의 시기가 밀접한 관련이 있다. S. griseus는 streptomycin을 비롯한 다양한 종류의 endopeptidase 및 exopeptidase들을 생산한다. 방선균에서의 protease 생산은 많은 경우에 이차대사산물이 형성되거나 형태분화가 유도되는 시기에 동시에 시작된다는 점에서 Pretense가 이차대사물질 생산 및 세포분화에 일정한 기능을 수행할 것이 라는 점을 시사하고 있다. 본 연구에서는 S. griseus IFO 13350에서 클로닝한 SGPD protease가 각 strain에서 형태학적으로나 생리적으로 어떠한 gene dosage 효과를 미치는지 조사하는 것이었다. sprD 유전자가 S.lividans를 숙주로 사용한 시스템에서 대량발현이 성공적으로 되는 것을 확인한 후, 본 유전자를 클로닝한 S. griseus IFO13350 균주와 이의 A-factor 결손주인 S. griseus HH1에 형질전환하였다. S. griseus HH1과 S. griseus IFO13350에서는 protease activity가 벡터만 도입된 대조군과 sprD 유전자가 들어간 형질전환체에서 큰 차이를 보이지 않았다. 또한 S. griseus IFO 13350 및 HH1 모두에서 생리학적·형태학적 분화의 차이를 발견하지 못하였다. Chymotrypsin계열의 pretense를 암호화하는 유전자만이 S. griseus에서 발현이 repression된다는 사실을 본 연구 결과를 통하여 알게 되었다. 이를 바탕으로 sprD유전자와 동일계열의 chymotrypsin 계열의 유전자들이 공통적으로 S. griseus에서 repression 되는 일반적인 기전이 있을 것으로 판단, chymotrypsin계열 유전자들의 promoter부분의 염기 상동성을 조사하였다 번역개시부위 바로 상부 유전자부터 상동성을 조사한 결과 적어도 상당부분의 염기배열이 잘 보존된 지역이 존재함을 알게 되었다. 향후 이들 발현기구의 조절기구를 연구함으로서 protease의 기능을 밝히는데 좋은 단서를 제공할 것으로 판단된다.

Overproduction of Streptomyces griseus Protease A and B Induces Morphological Changes in Streptomyces lividans

  • Chi, Won-Jae;Kim, Jung-Mee;Choi, Si-Sun;Kang, Dae-Kyung;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.1077-1086
    • /
    • 2001
  • The sprA and sprB gene encoding chymotrypsin-like proteases Streptomyces griseus protease A (SGPA) and Streptomyces griseus protease B (SGPB) and the sprT gene that encodes Streptomyces griseus trypsin (SGT) were cloned from Streptomyces griseus ATCC10137 and overexpressed in Streptomyces lividans TK24 as a heterologous host. The chymotrypsin activity of tole culture broth measured with the artificial chromogenic substrate , N-succinyl-ala-ala-pro-phe-p-nitroanilide, was 10, 14 and 14 units/mg in the transformants haboring the sprA, sprB and sprD genes, respectively. The growth of S. lividans reached the maximum cell mass after 4 days of culture, yet SGPA and SGPD production started in the stationary phase of cell growth and kept increasing for up to 10 days of culture in an R2YE medium. The trypsin activity of the culture broth measured with the artificial chromogenic substrate , N-${\alpha}$-benzoyl-DL- arginine-p-nitroanilide , was 16 units/mg and SGT production started in the stationary phase of cell growth and kept increasing for up to 10 days of culture in an R2YE medium. The introduction of the sprA gene into S, lividans TK24 triggered the biosynthesis of pigmented antibiotics, actinorhodin and undecylprodigiosin, and induced significant morphological changes in the colonies in Benedict, R2YE, and R1R2 media. In addition, the introduction of the sprT gene also induced morphological changes in the colony shape without affecting the antibiotic production, thereby implying that certain proteases would appear to play very important and specific roles in secondary-metabolites formation and morphological differentiation in Streptomyces.

  • PDF