• Title/Summary/Keyword: SGC7901 gastric cancer cells

Search Result 29, Processing Time 0.02 seconds

Tanshinone IIA Reverses the Malignant Phenotype of SGC7901 Gastric Cancer Cells

  • Xu, Min;Cao, Fa-Le;Li, Nai-Yi;Liu, Yong-Qiang;Li, Yan-Peng;Lv, Chun-Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.173-177
    • /
    • 2013
  • Backgrounds: Tanshinone IIA (TIIA), a phenanthrenequinone derivative extracted from Salvia miltiorrhiza BUNGE, has been reported to be a natural anti-cancer agent in a variety of tumor cells. However, the effect of TIIA on gastric cancer cells remains unknown. In the present study, we investigated the influence of TIIA on the malignant phenotype of SGC7901 gastric cancer cells. Methods: Cells cultured in vitro were treated with TIIA (0, 1, 5, $10{\mu}g/ml$) and after incubation for different periods, cell proliferation was measured by MTT method and cell apoptosis and cell cycling were assessed by flow cytometry (FCM). The sensitivity of SGC7901 gastric cancer cells to anticancer chemotherapy was investigated with the MTT method, while cell migration and invasion were examined by wound-healing and transwell assays, respectively. Results: TIIA (1, 5, $10{\mu}g/ml$) exerted powerful inhibitory effects on cell proliferation (P < 0.05, and P < 0.01), and this effect was time- and dose-dependent. FCM results showed that TIIA induced apoptosis of SGC7901 cells, reduced the number of cells in S phase and increased those in G0/G1 phase. TIIA also significantly increased the sensitivity of SGC7901 gastric cancer cells to ADR and Fu. Moreover, wound-healing and transwell assays showed that TIIA markedly decreased migratory and invasive abilities of SGC7901 cells. Conclusions: TIIA can reverse the malignant phenotype of SGC7901 gastric cancer cells, indicating that it may be a promising therapeutic agent.

A Sphingosine Kinase-1 Inhibitor, SKI-II, Induces Growth Inhibition and Apoptosis in Human Gastric Cancer Cells

  • Li, Pei-Hua;Wu, Jin-Xia;Zheng, Jun-Nian;Pei, Dong-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10381-10385
    • /
    • 2015
  • SKI-II has been reported as an inhibitor of sphingosine kinase 1 and has been extensively used to prove the involvement of sphingosine kinase and sphingosine-1-phosphate (Sphk1) in cellular processes. In the current study, we investigated the effects of SKI-II and its potential mechanisms in human gastric cancer SGC7901 cells. After treatment with SKI-II, cell growth, cell cycle distribution, apoptosis, expression of Sphk1, NF-${\kappa}B$, Bcl-2, Bax and p27 were assessed by MTT assay, flow cytometry, electron microscopy, immunocytochemistry and Western-blot assay, respectively. Our results showed that SKI-II markedly inhibited SGC7901 cell survival in a dose-dependent manner, reduced cell proliferation with accumulation of cells in the G0/G1 phase and induced apoptosis in the tumor cells. Furthermore, Western blotting and immunocytochemistry showed that the expression of p27 and Bax was increased significantly, but the expression of NF-${\kappa}B$, Bcl-2 and Sphk1 decreased by different degrees. These results indicate that SKI-II induced cell growth arrest and apoptosis. The increased apoptotic sensitivity of SGC7901 was correlated with NF-${\kappa}B$ or Bcl-2/Bax activation.

Induction of Cytotoxicity and Apoptosis in Human Gastric Cancer Cell SGC-7901 by Isovaltrate Acetoxyhydrin Isolated from Patrinia heterophylla Bunge Involves a Mitochondrial Pathway and G2/M Phase Cell Cycle Arrest

  • Yang, Bo;Wang, Yi-Qi;Cheng, Ru-Bin;Chen, Jia-Li;Chen, Jin;Jia, Li-Tao;Zhang, Ru-Song
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6481-6486
    • /
    • 2013
  • Background: Our previous study demonstrated cytotoxicity of a crude extract from Patrinia heterophylla Bunge (PHEB). In the present study, we aimed to investigate the effects of isovaltrate acetoxyhydrin (IA) isolated from PHEB on the gastric cancer cell SGC-7901, in order to explore a potential treatment for gastric cancer. Methods: MTT assays were employed to determine the effects of IA on cell vitality and proliferation, with monitoring of cell morphology changes and examination of apoptosis with Annexin V-PI staining. Flow cytometry was used to assess cell cycle progression and mitochondrial membrane potential. The activity of caspase 3, 9 was evaluated by spectrophotometry, and the protein levels of Bax, Bcl2 and Cyclin B1 were analyzed with Western blotting of total proteins extracted from cultured cells. Results: The results demonstrated direct toxicity of IA towards SGC-7901 cells. Evidence of apoptosis included blebbing and chromatin condensation. Annexin V-PI assays revealed early apoptosis, involving rapid depolarization of mitochondrial membranes and activity of caspase 3, 9 signaling pathways. Western blotting showed that Bcl2 and Bax proteins was down- and up-regulated, respectively, and cyclin B1 was up-regulated. Cell cycle analysis further indicated that IA could induce G2/M phase arrest in SGC-7901 cells. Conclusions: In conclusion, we believe that IA induces apoptosis of SGC-7901 cells, therefore providing a potential therapeutic agent for treatment of gastric cancer.

Downregulation of Cdk1 and CyclinB1 Expression Contributes to Oridonin-induced Cell Cycle Arrest at G2/M Phase and Growth Inhibition in SGC-7901 Gastric Cancer Cells

  • Gao, Shi-Yong;Li, Jun;Qu, Xiao-Ying;Zhu, Nan;Ji, Yu-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6437-6441
    • /
    • 2014
  • Background: Oridonin isolated from Rabdosia rubescens, a plant used to treat cancer in Chinese folk medicine, is one of the most important antitumor active ingredients. Previous studies have shown that oridonin has antitumor activities in vivo and in vitro, but little is known about cell cycle effects of oridonin in gastric cancer. Materials and Methods: MTT assay was adopted to detect the proliferation inhibition of SGC-7901 cells, the cell cycle was assessed by flow cytometry and protein expression by Western blotting. Results: Oridonin could inhibit SGC-7901 cell proliferation, the $IC_{50}$ being $15.6{\mu}M$, and blocked SGC-7901 cell cycling in the $G_2/M$ phase. The agent also decreased the protein expression of cyclinB1 and CDK1. Conclusions: Oridonin may inhibit SGC-7901 growth and block the cells in the $G_2/M$ phase by decreasing Cdk1 and cyclinB1 proteins.

S-benzyl-cysteine-mediated Cell Cycle Arrest and Apoptosis Involving Activation of Mitochondrial-dependent Caspase Cascade through the p53 Pathway in Human Gastric Cancer SGC-7901 Cells

  • Sun, Hua-Jun;Meng, Lin-Yi;Shen, Yang;Zhu, Yi-Zhun;Liu, Hong-Rui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6379-6384
    • /
    • 2013
  • S-benzyl-cysteine (SBC) is a structural analog of S-allylcysteine (SAC), which is one of the major water-soluble compounds in aged garlic extract. In this study, anticancer activities and the underlying mechanisms of SBC action were investigated and compared these with those of SAC using human gastric cancer SGC-7901 cells. SBC significantly suppressed the survival rate of SGC-7901 cells in a concentration- and time-dependent manner, and the inhibitory activities of SBC were stronger than those of SAC. Flow cytometry revealed that SBC induced G2-phase arrest and apoptosis in SGC-7901 cells. Typical apoptotic morphological changes were observed by Hoechst 33258 dye assay. SBC-treatment dramatically induced the dissipation of mitochondrial membrane potential (${\Delta}{\Psi}m$), and enhanced the enzymatic activities of caspase-9 and caspase-3 whilst hardly affecting caspase-8 activity. Furthermore, Western blotting indicated that SBC-induced apoptosis was accompanied by up-regulation of the expression of p53, Bax and the down-regulation of Bcl-2. Taken together, this study suggested that SBC exerts cytotoxic activity involving activation of mitochondrial-dependent apoptosis through p53 and Bax/Bcl-2 pathways in human gastric cancer SGC-7901 cells.

Expression and Underlying Roles of IGFBP-3 in Paclitaxel-Treated Gastric Cancer Sgc-7901 Cells

  • Huang, Gang;Dang, Zhong-Feng;Dang, Ya-Mei;Cai, Wei;Li, Yuan;Chen, Yi-Rong;Xie, Xiao-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5741-5745
    • /
    • 2014
  • Purpose: To study the expression of insulin-like growth factor binding proteins (IGFBPs) in paclitaxel-treated gastric cancer SGC-7901 cells, and to further investigate underlying mechanisms. Materials and Methods: Real time PCR and Western blot assays were applied to detect the mRNA and protein expression of IGFBP-2, -3 and -5 after paclitaxel (10 nM) treatment of SGC-7901 cells. In addition IGFBP-3 expression was silenced by RNA interference to determine effects. Cell viability was determined by MTT assay. Cell cycling and apoptosis were assessed by flow cytometry. Results: Compared to the control group, only IGFBP-3 expression was elevated significantly after paclitaxel (10 nM) treatment (p<0.05). Paclitaxel treatment caused cell cycle arrest and apoptosis via downregulating Bcl-2 expression. However, the effect could be abrogated by IGFBP-3 silencing. Conclusions: IGFBP-3 exhibits anti-apoptotic effects on paclitaxel-treated SGC-7901 cells via elevating Bcl-2 expression.

Ursolic Acid Promotes Apoptosis of SGC-7901 Gastric Cancer Cells through ROCK/PTEN Mediated Mitochondrial Translocation of Cofilin-1

  • Li, Rui;Wang, Xia;Zhang, Xiao-Hong;Chen, Hong-Hai;Liu, Yan-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9593-9597
    • /
    • 2014
  • Ursolic acid, extracted from the traditional Chinese medicine bearberry, can induce apoptosis of gastric cancer cells. However, its pro-apoptotic mechanism still needs further investigation. More and more evidence demonstrates that mitochondrial translocation of cofilin-1 appears necessary for the regulation of apoptosis. Here, we report that ursolic acid (UA) potently induces the apoptosis of gastric cancer SGC-7901 cells. Further mechanistic studies revealed that the ROCK1/PTEN signaling pathway plays a critical role in UA-mediated mitochondrial translocation of cofilin-1 and apoptosis. These findings imply that induction of apoptosis by ursolic acid stems primarily from the activation of ROCK1 and PTEN, resulting in the translocation of cofilin-1 from cytoplasm to mitochondria, release of cytochrome c, activation of caspase-3 and caspase-9, and finally inducing apoptosis of gastric cancer SGC-7901 cells.

Role of Integrin-Linked Kinase in Multi-drug Resistance of Human Gastric Carcinoma SGC7901/DDP Cells

  • Song, Wei;Jiang, Rui;Zhao, Chun-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5619-5625
    • /
    • 2012
  • Gastric carcinoma is a leading cause of cancer death in the world and multi-drug resistance (MDR) is an essential aspect of gastric carcinoma chemotherapy failure. Recent studies have shown that integrin-linked kinase (ILK) is involved in metastasis of human tumors, expression silencing of ILK inhibiting the metastasis of several types of cultured human cancer cells. However, the role and potential mechanism of ILK to reverse the multi-drug resistance in human gastric carcinoma is not fully clear. In this report, we focused on roles of expression silencing of ILK in multi-drug resistance reversal of human gastric carcinoma SGC7901/DDP cells, including increased drug sensitivity to cisplatin, cell apoptosis rates, and intracellular accumulation of Rhodamine-123, and decreased mRNA and protein expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), excision repair cross-complementing gene 1 (ERCC1), glutathione S-transferase -${\pi}$ (GST-${\pi}$) and RhoE, and transcriptional activation of AP-1 and NF-${\kappa}B$ in ILK silenced SGC7901/DDP cells. We also found that there was a decreased level of p-Akt and p-ERK. The results indicated that ILK might be used as a potential therapeutic strategy to combat multi-drug resistance through blocking PI3K-Akt and MAPK-ERK pathways in human gastric carcinoma.

Curcumin Induces Apoptosis in SGC-7901 Gastric Adenocarcinoma Cells via Regulation of Mitochondrial Signaling Pathways

  • Xue, Xia;Yu, Jin-Long;Sun, De-Qing;Kong, Feng;Qu, Xian-Jun;Zou, Wen;Wu, Jing;Wang, Rong-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.3987-3992
    • /
    • 2014
  • Curcumin, a polyphenol compound derived from the rhizome of the plant Curcuma longa L. has been verified as an anticancer compound against several types of cancer. However, understanding of the molecular mechanisms by which it induces apoptosis is limited. In this study, the anticancer efficacy of curcumin was investigated in human gastric adenocarcinoma SGC-7901 cells. The results demonstrated that curcumin induced morphological changes and decreased cell viability. Apoptosis triggered by curcumin was visualized using Annexin V-FITC/7-AAD staining. Curcumin-induced apoptosis of SGC-7901 cells was associated with the dissipation of mitochondrial membrane potential (MMP) and the release of cytochrome c into the cytosol. Furthermore, the down-regulation of Bcl-2 and up-regulation of Bax that led to the cleavage of caspase-3 and increased cleaved PARP was observed in SGC-7901 cells treated with curcumin. Therefore, curcumin-induced apoptosis of SGC-7901 cells might be mediated through the mitochondria pathway, which gives the rationale for in vivo studies on the utilization of curcumin as a potential cancer therapeutic compound.

Ginsenoside-Rh2 Inhibits Proliferation and Induces Apoptosis of Human Gastric Cancer SGC-7901 Side Population Cells

  • Qian, Jun;Li, Jing;Jia, Jian-Guang;Jin, Xin;Yu, Da-Jun;Guo, Chen-Xu;Xie, Bo;Qian, Li-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1817-1821
    • /
    • 2016
  • Objectives: To observed the effects of ginsenoside -Rh2 (GS-Rh2) on proliferation and apoptosis of side population (SP) human gastric cancer SGC-7901 cells. Materials and Methods: SGC-7901 SP and Non-SP cells were sorted by flow cytometry and assessed using the cck-8 method. Expression of apoptosis-related proteins Bax and Bcl-2 of SP before and after the intervention was determined by Western-blotting. Results: It was found that the proliferation of SP was significantly faster than that of NSP (P<0.05). In addition, GS-Rh2 inhibited proliferation of gastric cancer SP cells, induced cell cycle arrest and cell apoptosis, and changed the expression of BAX/Bcl-2 proteins in a time-dependent and concentration-dependent manner (P<0.05). Conclusions: With increase of GS-Rh2 dose, GS-Rh2 gradually inhibit the proliferation of SGC-7901 SP cells, which have high proliferation rate, through G1/G0 phase arrest, followed by apoptosis which involves the up-regulation of Bax and the down-regulation of Bcl-2.