A Metropolis genetic algorithm(MGA) is developed and applied for the structural design optimization. In MGA favorable features of Metropolis algorithm in simulated annealing(SA) are incorporated in simple genetic algorithm(SGA), so that the MGA alleviates the disadvantage of finding imprecise solution in SGA and time-consuming computation in SA. Performances of MGA are compared with those of conventional algorithms such as Holland's SGA, Krishnakumar's micro genetic algorithm(μGA), and Kirkpatrick's SA. Typical numerical examples are used to evaluate the favorable features and applicability of MGA From the theoretical evaluation and numerical experience, it is concluded that the proposed MGA is a reliable and efficient tool for structural design optimization.
최근에 인공지능 분야에서는, 국내외적으로 강화학습(reinforcement learning)에 관한 관심이 크게 증폭되고 있다. 강화학습의 최근 경향을 살펴보면, 크게 가치함수를 직접 활용하는 방법(value function-based methods), 제어 전략에 대한 탐색을 활용하는 방법(policy search methods), 그리고 액터-크리틱 방법(actor-critic methods)의 세가지 방향으로 발전하고 있음을 알 수 있다. 본 논문에서는 이중 세 번째 부류인 액터-크리틱 방법 중 NAC(natural actor-critic) 기법의 한 종류인 RLS-NAC(recursive least-squares based natural actor-critic) 알고리즘을 다양한 트레이스 감쇠계수를 사용하여 연속제어입력(real-valued control inputs)으로 제어되는 Kimura의 기는 로봇에 대해 적용해보고, 그 성능을 기존의 SGA(stochastic gradient ascent) 알고리즘을 이용하여 학습한 경우와 비교해보도록 한다.
Structural learning methods of MLP classifiers for a given application using genetic algorithms have been studied. In the methods, however, the search space for an optimal structure is increased exponentially for the physical application of high diemension-multi calss. In this paperwe propose a method of MLP classifiers using species genetic algorithm(SGA), a modified GA. In SGA, total search space is divided into several subspaces according to the number of hidden units. Each of the subdivided spaces is called "species". We eliminate low promising species from the evoluationary process in order to reduce the search space. experimental results show that the proposed method is more efficient than the conventional genetic algorithm methods in the aspect of the misclassification ratio, the learning rate, and the structure.structure.
The Job Shop Scheduling Problem(JSSP) is one of the most general and difficult of all traditional scheduling problems. The goal of this research is to develop an efficient scheduling method based on single genetic algorithm(SGA) and parallel genetic algorithm (PGA) to address JSSP. In this scheduling method, new genetic operator, generating method of initial population are developed and island model PGA are proposed. The scheduling method based on PGA are tested on standard benchmark JSSP. The results were compared with SGA and another GA-based scheduling method. The PGA search the better solution or improves average of solution in benchmark JSSP. Compared to traditional GA, the proposed approach yields significant improvement at a solution.
We propose a robust blind equalization algorithm based on quadrant-partitioned constellations for QAM demodulation. The algorithm divides the received M-QAM constellations into simple four quadrant. The channel equalization for symbols in each quadrant can be accomplished fast and reliably using the Constant Modulus Algorithm(CMA) and the Stop-and-Go Algorithm(SGA). Test results confirm that the proposed algorithm with lower complexity outperforms both the CMA and the SGA in reducing the SER as well as the MSE at the equalizer output.
본 연구는 다목적 유전자알고리즘을 이용하여 Tank 모형의 매개변수를 추정하는데 있어서 선호적순서화(preference ordering)를 적용한 연구로써, 목적함수의 개수가 여러 개인 경우에 발생할 수 있는 파레토최적화의 단점을 해결하기 위한 것이다. 최적화를 위한 목적함수는 모두 4가지를 사용하였으며, 선호적순서화를 통해서 구한 2차 효율성(2nd order efficiency)을 가지면서 정도(degree)가 3인 4개의 해 중에서 1개의 해만을 최우선해로 선정하였다. NSGA-II로 도출된 최우선해의 적합성을 살펴보기 위해서, 자동보정방법인 Powell 방법과 SGA(simple genetic algorithm)를 매개변수 자동보정 방법으로 이용하고 하나의 단일목적함수로 사용해서 최적화한 결과와 비교해보았으며, 비교결과 다목적 유전자 알고리즘을 4개의 목적함수에 모두 적용해서 한번에 도출된 매개변수를 이용한 결과가 보정기간뿐만 아니라 검정기간에 대해서도 비교적 양호한 결과를 나타내는 것으로 나타났다.
Kim, Hong-Taek;Kang, In-Kyr;Jeon, Eung-Jin;Park, Sa-Won
한국지반공학회논문집
/
제16권3호
/
pp.47-55
/
2000
본 연구에서는, 유전자 알고리즘을 이용한 piled raft 기초의 최적설계 기법을 제시하였다. 최적설계에 사용한 목적함수는 구조물의 사용한계에 해당하는 부등침하량과 piled raft 기초의 시고비용 차원에서의 말뚝과 raft의 총 중량으로 하였다. 유전자 알고리즘은 다읜의 적자생존의 법칙을 따르는 자연진화 법칙을 바탕으로 한 최적화 기법이다. 본 연구에서는 piled raft 기초의 해석방법으로 Clancy(1993)가 제시한 "hybrid" 해석방법을 사용하였으며, 유전자 알고리즘기법은 Goldberg(1989)가 제시한 단순 유전자 알고리즘(SGA)을 적용하였다. 또한 유전자 알고리즘을 이용한 최적설계기법의 유효성을 평가하기 위해 설계예제 및 매개변수변화연구를 통해 piled raft 기초시스템의 중요 설계인자들에 대한 분석을 수행하였다. 매개변수변화연구로부터 말뚝의 길이와 raft의 두께가 증가할수록 piled raft 기초시스템의 전체 중량은 일정한 값에 점차적으로 수렴하였으며, 지반의 강정, raft의 두께 말뚝의 길이 및 강성이 증가할수록 말뚝의 최적위치는 raft의 중앙에 집중되는 경향으로 나타났다.경향으로 나타났다.
본 논문에서는 부모 개체의 해밍 거리에 기반하여 선택적 변이연산을 적용한 유전알고리즘을 제안한다. 유전자 형이 매우 유사한 개체들 간의 유전연산은 알고리즘의 탐색성능을 저하시키고 조기 수렴의 가능성을 증가시킨다. 본 논문에서는 이러한 현상을 극복하기 위하여, 교차연산 시 선택된 두 부모 개체간의 해밍 거리에 따라 그 값이 낮으면 교차연산 후 생성된 두 자식 개체 중 한쪽에게 높은 변이확률을 적용하고 다른 한쪽 자식은 부모와 비슷한 유전자 형으로 탐색을 계속하게 하여 조기 수렴을 방지하면서 해집단의 다양성 유지 기능을 향상 시켰다. 제안한 유전 알고리즘을 다차원 배낭 문제에 적용한 결과, 같은 조건에서 단순 유전 알고리즘(SGA) 보다 향상된 탐색 성능을 보여주었다.
에어컨 시스템은 압축기(Compressor), 응축기(Condenser), 증발기(Evaporator)와 확장밸브(Expansion Valve)로 구성되며, 에어컨 시스템에서 과열도와 저압(증발기의 압력)은 시스템의 효율 증대 및 성능 개선과 안정성에 대하여 결정적인 영향을 미친다. 따라서, 과열도와 저압을 조절하기 위해, 각각의 압축기내의 인버터 주파수와 확장밸브의 개도 제어가 중요하며 선형과 비선형 시스템 모두에 대하여 견실한 성능을 나타내고, 외란에 대하여 강인한 성능을 보이는 퍼지 제어기를 설계한다. 본 논문에서는 과열도와 저압을 제어하기 위하여, 3대의 확장밸브와 1대의 압축기를 가진 에어컨 시스템에 대하여 다중 퍼지 제어기를 설계한다. 또한, 각 제어 플랜트에 대하여 최적의 퍼지 제어기를 설계하기 위하여 3가지 최적화 알고리즘을 사용한다. 즉, 직렬 유전자 알고리즘(Serial Genetic Algorithm; SGA)과 병렬 유전자 알고리즘인 계층적 공정 경쟁 유전자 알고리즘(Hierarchical Fair Competition Genetic Algorithm; HFCGA), 그리고 Particle Swarm Optimization(PSO)을 사용하여 다중 퍼지 제어기를 최적화하고 시뮬레이션의 결과를 비교한다.
본 논문에서는 유리재단 문제에 평균장 어닐링과 시뮬레이션된 어닐링 형태의 유전자 알고리즘을 결합한 합성 알고리즘을 분산 처리하여 적용한다. 유리재단 문제는 2차원 2진 패킹 문제로 주어진 원판에 요구되는 사각형 모양의 패턴들을 버려지는 부분이 최소가 되게 배치하는 조합 최적화 문제이다. 제안된 합성 알고리즘은 유전자 알고리즘의 다양한 연산자에 시뮬레이션된 어닐링의 온도개념을 추가하여 평균장 알고리즘에 의한 빠른 평형상태 도달을 유지하게 하였다. MPI를 이용한 분산 합성 알고리즘을 유리재단 문제에 적용하여 실험한 결과 기존의 평균장 어닐링 또는 유전자 알고리즘을 단독으로 사용하였을 때보다 최적의 배치 상태를 나타내었으며 최적해 접근 특성을 유지하면서 문제의 크기에 대하여 선형적인 수행시간 단축을 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.