• 제목/요약/키워드: SGA 알고리즘

검색결과 42건 처리시간 0.022초

구조물의 설계 최적화를 위한 메트로폴리스 유전알고리즘의 개발 및 적용 (Development and Application of Metropolis Genetic Algorithm for the Structural Design Optimization)

  • 박균빈;류연선;김정태;조현만
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.115-122
    • /
    • 2003
  • A Metropolis genetic algorithm(MGA) is developed and applied for the structural design optimization. In MGA favorable features of Metropolis algorithm in simulated annealing(SA) are incorporated in simple genetic algorithm(SGA), so that the MGA alleviates the disadvantage of finding imprecise solution in SGA and time-consuming computation in SA. Performances of MGA are compared with those of conventional algorithms such as Holland's SGA, Krishnakumar's micro genetic algorithm(μGA), and Kirkpatrick's SA. Typical numerical examples are used to evaluate the favorable features and applicability of MGA From the theoretical evaluation and numerical experience, it is concluded that the proposed MGA is a reliable and efficient tool for structural design optimization.

  • PDF

강화학습에 의해 학습된 기는 로봇의 성능 비교 (Performance Comparison of Crawling Robots Trained by Reinforcement Learning Methods)

  • 박주영;정규백;문영준
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.33-36
    • /
    • 2007
  • 최근에 인공지능 분야에서는, 국내외적으로 강화학습(reinforcement learning)에 관한 관심이 크게 증폭되고 있다. 강화학습의 최근 경향을 살펴보면, 크게 가치함수를 직접 활용하는 방법(value function-based methods), 제어 전략에 대한 탐색을 활용하는 방법(policy search methods), 그리고 액터-크리틱 방법(actor-critic methods)의 세가지 방향으로 발전하고 있음을 알 수 있다. 본 논문에서는 이중 세 번째 부류인 액터-크리틱 방법 중 NAC(natural actor-critic) 기법의 한 종류인 RLS-NAC(recursive least-squares based natural actor-critic) 알고리즘을 다양한 트레이스 감쇠계수를 사용하여 연속제어입력(real-valued control inputs)으로 제어되는 Kimura의 기는 로봇에 대해 적용해보고, 그 성능을 기존의 SGA(stochastic gradient ascent) 알고리즘을 이용하여 학습한 경우와 비교해보도록 한다.

  • PDF

종족 유전 알고리즘을 이용한 MLP 분류기의 구조학습 (A structural learning of MLP classifiers using species genetic algorithms)

  • 신성효;김상운
    • 전자공학회논문지C
    • /
    • 제35C권2호
    • /
    • pp.48-55
    • /
    • 1998
  • Structural learning methods of MLP classifiers for a given application using genetic algorithms have been studied. In the methods, however, the search space for an optimal structure is increased exponentially for the physical application of high diemension-multi calss. In this paperwe propose a method of MLP classifiers using species genetic algorithm(SGA), a modified GA. In SGA, total search space is divided into several subspaces according to the number of hidden units. Each of the subdivided spaces is called "species". We eliminate low promising species from the evoluationary process in order to reduce the search space. experimental results show that the proposed method is more efficient than the conventional genetic algorithm methods in the aspect of the misclassification ratio, the learning rate, and the structure.structure.

  • PDF

Job Shop 일정계획을 위한 병렬 유전 알고리즘 (A Parallel Genetic Algorithms for lob Shop Scheduling Problems)

  • 박병주;김현수
    • 산업경영시스템학회지
    • /
    • 제23권59호
    • /
    • pp.11-20
    • /
    • 2000
  • The Job Shop Scheduling Problem(JSSP) is one of the most general and difficult of all traditional scheduling problems. The goal of this research is to develop an efficient scheduling method based on single genetic algorithm(SGA) and parallel genetic algorithm (PGA) to address JSSP. In this scheduling method, new genetic operator, generating method of initial population are developed and island model PGA are proposed. The scheduling method based on PGA are tested on standard benchmark JSSP. The results were compared with SGA and another GA-based scheduling method. The PGA search the better solution or improves average of solution in benchmark JSSP. Compared to traditional GA, the proposed approach yields significant improvement at a solution.

  • PDF

QAM 복조용 4분면 분할 자력복구 채널등화 알고리즘 (Quadrant-partitioned Blind Equalization Algorithm for QAM Demodulation)

  • 류석규;황유모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.627-629
    • /
    • 1998
  • We propose a robust blind equalization algorithm based on quadrant-partitioned constellations for QAM demodulation. The algorithm divides the received M-QAM constellations into simple four quadrant. The channel equalization for symbols in each quadrant can be accomplished fast and reliably using the Constant Modulus Algorithm(CMA) and the Stop-and-Go Algorithm(SGA). Test results confirm that the proposed algorithm with lower complexity outperforms both the CMA and the SGA in reducing the SER as well as the MSE at the equalizer output.

  • PDF

다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용 (Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (II): Application of Preference Ordering)

  • 구보영;김태순;정일원;배덕효
    • 한국수자원학회논문집
    • /
    • 제40권9호
    • /
    • pp.687-696
    • /
    • 2007
  • 본 연구는 다목적 유전자알고리즘을 이용하여 Tank 모형의 매개변수를 추정하는데 있어서 선호적순서화(preference ordering)를 적용한 연구로써, 목적함수의 개수가 여러 개인 경우에 발생할 수 있는 파레토최적화의 단점을 해결하기 위한 것이다. 최적화를 위한 목적함수는 모두 4가지를 사용하였으며, 선호적순서화를 통해서 구한 2차 효율성(2nd order efficiency)을 가지면서 정도(degree)가 3인 4개의 해 중에서 1개의 해만을 최우선해로 선정하였다. NSGA-II로 도출된 최우선해의 적합성을 살펴보기 위해서, 자동보정방법인 Powell 방법과 SGA(simple genetic algorithm)를 매개변수 자동보정 방법으로 이용하고 하나의 단일목적함수로 사용해서 최적화한 결과와 비교해보았으며, 비교결과 다목적 유전자 알고리즘을 4개의 목적함수에 모두 적용해서 한번에 도출된 매개변수를 이용한 결과가 보정기간뿐만 아니라 검정기간에 대해서도 비교적 양호한 결과를 나타내는 것으로 나타났다.

유전자 알고이즘을 이용한 Piled Raft 기초의 최적설계 (Optimum Design of Piled Raft Foundations Using A Genetic Algorithm)

  • Kim, Hong-Taek;Kang, In-Kyr;Jeon, Eung-Jin;Park, Sa-Won
    • 한국지반공학회논문집
    • /
    • 제16권3호
    • /
    • pp.47-55
    • /
    • 2000
  • 본 연구에서는, 유전자 알고리즘을 이용한 piled raft 기초의 최적설계 기법을 제시하였다. 최적설계에 사용한 목적함수는 구조물의 사용한계에 해당하는 부등침하량과 piled raft 기초의 시고비용 차원에서의 말뚝과 raft의 총 중량으로 하였다. 유전자 알고리즘은 다읜의 적자생존의 법칙을 따르는 자연진화 법칙을 바탕으로 한 최적화 기법이다. 본 연구에서는 piled raft 기초의 해석방법으로 Clancy(1993)가 제시한 "hybrid" 해석방법을 사용하였으며, 유전자 알고리즘기법은 Goldberg(1989)가 제시한 단순 유전자 알고리즘(SGA)을 적용하였다. 또한 유전자 알고리즘을 이용한 최적설계기법의 유효성을 평가하기 위해 설계예제 및 매개변수변화연구를 통해 piled raft 기초시스템의 중요 설계인자들에 대한 분석을 수행하였다. 매개변수변화연구로부터 말뚝의 길이와 raft의 두께가 증가할수록 piled raft 기초시스템의 전체 중량은 일정한 값에 점차적으로 수렴하였으며, 지반의 강정, raft의 두께 말뚝의 길이 및 강성이 증가할수록 말뚝의 최적위치는 raft의 중앙에 집중되는 경향으로 나타났다.경향으로 나타났다.

  • PDF

개체간 해밍 거리 기반의 변이연산을 적용한 유전알고리즘을 이용한 다차원 배낭 문제 탐색 (Genetic Algorithm Applying Modified Mutation Operator Based on Hamming Distance for Solving Multi-dimensional Knapsack Problem)

  • 정재훈;이종현;안창욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.1728-1731
    • /
    • 2012
  • 본 논문에서는 부모 개체의 해밍 거리에 기반하여 선택적 변이연산을 적용한 유전알고리즘을 제안한다. 유전자 형이 매우 유사한 개체들 간의 유전연산은 알고리즘의 탐색성능을 저하시키고 조기 수렴의 가능성을 증가시킨다. 본 논문에서는 이러한 현상을 극복하기 위하여, 교차연산 시 선택된 두 부모 개체간의 해밍 거리에 따라 그 값이 낮으면 교차연산 후 생성된 두 자식 개체 중 한쪽에게 높은 변이확률을 적용하고 다른 한쪽 자식은 부모와 비슷한 유전자 형으로 탐색을 계속하게 하여 조기 수렴을 방지하면서 해집단의 다양성 유지 기능을 향상 시켰다. 제안한 유전 알고리즘을 다차원 배낭 문제에 적용한 결과, 같은 조건에서 단순 유전 알고리즘(SGA) 보다 향상된 탐색 성능을 보여주었다.

다중 퍼지 제어기의 최적 설계와 에어컨 시스템으로의 적용 (Optimal Design of Multi-Fuzzy Controller and Its application to Air Conditioning System)

  • 장한종;최정내;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.313-316
    • /
    • 2008
  • 에어컨 시스템은 압축기(Compressor), 응축기(Condenser), 증발기(Evaporator)와 확장밸브(Expansion Valve)로 구성되며, 에어컨 시스템에서 과열도와 저압(증발기의 압력)은 시스템의 효율 증대 및 성능 개선과 안정성에 대하여 결정적인 영향을 미친다. 따라서, 과열도와 저압을 조절하기 위해, 각각의 압축기내의 인버터 주파수와 확장밸브의 개도 제어가 중요하며 선형과 비선형 시스템 모두에 대하여 견실한 성능을 나타내고, 외란에 대하여 강인한 성능을 보이는 퍼지 제어기를 설계한다. 본 논문에서는 과열도와 저압을 제어하기 위하여, 3대의 확장밸브와 1대의 압축기를 가진 에어컨 시스템에 대하여 다중 퍼지 제어기를 설계한다. 또한, 각 제어 플랜트에 대하여 최적의 퍼지 제어기를 설계하기 위하여 3가지 최적화 알고리즘을 사용한다. 즉, 직렬 유전자 알고리즘(Serial Genetic Algorithm; SGA)과 병렬 유전자 알고리즘인 계층적 공정 경쟁 유전자 알고리즘(Hierarchical Fair Competition Genetic Algorithm; HFCGA), 그리고 Particle Swarm Optimization(PSO)을 사용하여 다중 퍼지 제어기를 최적화하고 시뮬레이션의 결과를 비교한다.

  • PDF

유리재단 문제에 대한 분산 합성 알고리즘 (A Distributed Hybrid Algorithm for Glass Cutting)

  • 홍철의
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권2호
    • /
    • pp.343-349
    • /
    • 2018
  • 본 논문에서는 유리재단 문제에 평균장 어닐링과 시뮬레이션된 어닐링 형태의 유전자 알고리즘을 결합한 합성 알고리즘을 분산 처리하여 적용한다. 유리재단 문제는 2차원 2진 패킹 문제로 주어진 원판에 요구되는 사각형 모양의 패턴들을 버려지는 부분이 최소가 되게 배치하는 조합 최적화 문제이다. 제안된 합성 알고리즘은 유전자 알고리즘의 다양한 연산자에 시뮬레이션된 어닐링의 온도개념을 추가하여 평균장 알고리즘에 의한 빠른 평형상태 도달을 유지하게 하였다. MPI를 이용한 분산 합성 알고리즘을 유리재단 문제에 적용하여 실험한 결과 기존의 평균장 어닐링 또는 유전자 알고리즘을 단독으로 사용하였을 때보다 최적의 배치 상태를 나타내었으며 최적해 접근 특성을 유지하면서 문제의 크기에 대하여 선형적인 수행시간 단축을 보여 주었다.