• Title/Summary/Keyword: SG blowdown system

Search Result 6, Processing Time 0.017 seconds

Numerical prediction of transient hydraulic loads acting on PWR steam generator tubes and supports during blowdown following a feedwater line break

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Kim, Jongkap
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.322-336
    • /
    • 2021
  • This paper presents a numerical prediction of the transient hydraulic loads acting on the tubes and external supports of a pressurized water reactor (PWR) steam generator (SG) during blowdown following a sudden feedwater line break (FWLB). A simplified SG model was used to easily demonstrate the prediction. The blowdown discharge flow was treated as a flashing flow to realistically simulate the transient flow fields inside the SG and the connected broken feedwater pipe. The effects of the SG initial pressure or the broken feedwater pipe length on the intensities or magnitudes of transient hydraulic loads were investigated. Then predictions of the decompression pressure wave-induced impulsive pressure differential loads on SG tubes and the transient blowdown loads on SG external supports were demonstrated and the general aspects of transient responses of such transient hydraulic loads to the FWLB were discussed.

An Experimental Study on the Mass Release for a Hot Leg Break LBLOCA in Post Blowdown

  • Hong, Soon-Joon;Park, Goon-Cherl
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.405-410
    • /
    • 1996
  • New methodology for mass and energy release assessment in LBLOCA post blowdown is needed and, first of all, the phenomenologically improved and quantitative assessments through experiment are essential. For tile experiment of a hot leg break LBLOCA in post blowdown, the test facility was set and its feature is that tile broken hot leg has two broken sections in the tore side and in the SG side respectively and a separation valve between the two in order to measure the release rate dividedly. Specially it was focused on whether the mass release through the SG side broken section happened or not. The mass release through the core side broken section is dependent on tile safety injection flow and that through the SG side broken section varies depending on several factors. The principal factor is the primary system pressure and the subfactors such as SI flow rate, SI temperature and initial primary pressure, may contribute, too.

  • PDF

Numerical prediction of a flashing flow of saturated water at high pressure

  • Jo, Jong Chull;Jeong, Jae Jun;Yun, Byong Jo;Moody, Frederick J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1173-1183
    • /
    • 2018
  • Transient fluid velocity and pressure fields in a pressurized water reactor (PWR) steam generator (SG) secondary side during the blowdown period of a feedwater line break (FWLB) accident were numerically simulated employing the saturated water flashing model. This model is based on the assumption that compressed water in the SG is saturated at the beginning and decompresses into the two-phase region where saturated vapor forms, creating a mixture of steam bubbles in water by bulk boiling. The numerical calculations were performed for two cases of which the outflow boundary conditions are different from each other; one is specified as the direct blowdown discharge to the atmosphere and the other is specified as the blowdown discharge to an extended calculation domain with atmospheric pressure on its boundary. The present simulation results obtained using the two different outflow boundary conditions were discussed through a comparison with the predictions using a simple non-flashing model neglecting the effects of phase change. In addition, the applicability of each of the non-flashing water discharge and saturated water flashing models for the confirmatory assessments of new SG designs was examined.

EFFECTS OF AN ORIFICE-TYPE FLOW RESTRICTOR ON THE TRANSIENT THERMAL-HYDRAULIC RESPONSE OF THE SECONDARY SIDE OF A PWR STEAM GENERATOR TO A MAIN STEAM LINE BREAK (가압경수로 주증기관 파단시 증기발생기 2차측 과도 열수력 응답에 미치는 오리피스형 유량제한기의 영향)

  • Jo, J.C.;Min, B.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.87-93
    • /
    • 2015
  • In this study, a numerical analysis was performed to simulate the thermal-hydraulic response of the secondary side of a steam generator(SG) model equipped with an orifice-type SG outlet flow restrictor to a main steam line break(MSLB) at a pressurized water reactor(PWR) plant. The SG analysis model includes the SG upper steam space and the part of the main steam pipe between the SG outlet and the broken pipe end. By comparing the numerical calculation results for the present SG model to those obtained for a simple SG model having no flow restrictor, the effects of the flow restrictor on the thermal-hydraulic response of SG to the MSLB were investigated.

ANALYSIS OF A STATION BLACKOUT SCENARIO WITH AN ATLAS TEST

  • Kim, Yeon-Sik;Yu, Xin-Guo;Kang, Kyoung-Ho;Park, Hyun-Sik;Cho, Seok;Choi, Ki-Yong
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.179-190
    • /
    • 2013
  • A station blackout experiment called SBO-01 was performed at the ATLAS facility. From the SBO-01 test, the station blackout scenario can be characterized into two typical phases: A first phase characterized by decay heat removal through secondary safety valves until the SG dryouts, and a second phase characterized by an energy release through a blowdown of the primary system after the SG dryouts. During the second phase, some physical phenomena of the change over a pressurizer function, i.e., the pressurizer being full before the POSRV $1^{st}$ opening and then its function being taken by the RV, and the termination of normal natural circulation flow were identified. Finally, a core heatup occurred at a low core water level, although under a significant amount of PZR inventory, whose drainage seemed to be hindered owing to the pressurizer function by the RV. The transient of SBO-01 is well reproduced in the calculation using the MARS code.

Ion Exchange Modeling in ETA and NH$_3$ Aqueous Solutions (ETA 및 암모니아 수용액에서 이온교환 모델링)

  • 안현경;김상대;이인형
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.307-311
    • /
    • 2003
  • The test did for the determine the optimized ratio of cation to anion in mixed ion exchange demineralizers. Binary, ternary, quaternary, and quinary cation and anion adsorption was performed to develop a comprehensive experimental data set from small-volume batch tests to obtain the selectivity coefficients of many cations and anions. The quantitative run time might be estimated by such ion exchange models as semi-empirical mass action and surface complexation models. The demineralizer can be used longer by increasing the ratios of cation to anion exchange resins in the bed.

  • PDF