• Title/Summary/Keyword: SFBC

Search Result 37, Processing Time 0.031 seconds

A Pilot-Tone Based Channel Estimation Technique for Cooperative SFBC-OFDM Systems (Cooperative SFBC-OFDM 시스템을 위한 파일럿 톤 기반의 채널 추정 기법)

  • Park, Chang-Hwan;Ko, Yo-Han;Lee, Hee-Soo;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.661-668
    • /
    • 2008
  • In this paper, a channel estimation technique based on pilot tones is proposed for cooperative SFBC-OFDM systems with a STO(Symbol Timing Offset). In a cooperative SFBC-OFDM system, the STO between RS(Relay Station) and MS(Mobile Station) varies depending on the location of MS. Since the STO causes distortion in the form of phase rotation, a channel estimation technique based on linear interpolation with respect to phase and amplitude is proposed for the case of orthogonal pilot allocation. Also, a channel estimation technique is proposed by solving nonlinear equation for the case of pilot structure with orthogonal code. It is shown by computer simulation that the performance of channel estimation can be significantly improved when the proposed techniques are applied to cooperative SFBC-OFDM systems with STO.

Inter-carrier Interference Reduction Scheme for SFBC-OFDM Systems

  • Kim, Kyung-Hwa;Seo, Bangwon
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.783-790
    • /
    • 2014
  • In this paper, we first analyze carrier-to-interference ratio performance of the space-frequency block coded orthogonal frequency-division multiplexing (SFBC-OFDM) system in the presence of phase noise (PHN) and residual carrier frequency offset (RCFO). From the analysis, we observe that conventional SFBC-OFDM systems suffer severely in the presence of PHN and RCFO. Therefore, we propose a new inter-carrier interference (ICI) self-cancellation method - namely, ISC - for SFBC-OFDM systems to reduce the ICI caused by PHN and RCFO. Through the simulation results, we show that the proposed scheme compensates the ICI caused by PHN and RCFO in Alamouti SFBC-OFDM systems and has a better performance than conventional schemes.

A Relay Assisted Low PAPR Technique for SFBC-OFDM Transmission

  • Kim, Young-Jin;Seo, Dae-Young;Im, Gi-Hong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.649-655
    • /
    • 2009
  • The peak-to-average power ratio (PAPR) regrowth after the clipping is one main disadvantage of space-frequency block coded orthogonal frequency-division multiplexing (SFBC-OFDM). In this paper, we propose a relay assisted low PAPR technique for SFBC-OFDM transmission. For low PAPR at the source (mobile equipment), the relay processes SFBC encoding, which enables the source to transmit clipped single-input single-output (SISO)-OFDM signals without any increase of PAPR. Simulation results show that the clipped signal of proposed scheme is effectively recovered, and the proposed scheme achieves the diversity of SFBC without the complexity of multiple antennas at the source.

Multiple-Relay-assisted SSB SFBC SC-FDMA Transmission System (다중중계기 기반의 SSB SFBC SC-FDMA 시스템)

  • Won, HuiChul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.29-37
    • /
    • 2020
  • This paper proposes a multiple-relay-assisted single side band (SSB) space frequency block code (SFBC) single carrier (SC)-frequency division multiple access (FDMA) system and measures the performance of SSB SFBC SC-FDMA transmission system with the signal-to-noise power ratio SNR) between relays and a destination station. As we know, the performance of relay-assisted transmission systems can be easily improved by re-transmitting to the destination station after applying block code to the recovered transmitted signals of relays. In this paper, the performance improvement of the relay-assisted SSB SC-FDMA system can be obtained without any significant increase of system computational complexity by implementing block code with the complex conjugates symmetric characteristic of SSB system. The simulation result shows that the SNR performance of the proposed multiple-relay-assisted SSB SFBC SC-FDMA system is about 4 dB better than the performance of the single-relay-assisted SSB SC-FDMA system at the symbol error rate of 10-2.

Performance Comparison of SFBC/SFTC-OFDM Systems Under MB-OFDM Interference (MB-OFDM UWB 신호 간섭하에서 SFBC/SFTC-OFDM 시스템들의 성능 비교)

  • Kim, Kyung-Seok;Song, Chang-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.968-975
    • /
    • 2006
  • Research about the mode of MIMO that can get a coding benefit at the same time with a diversity benefit using a multiple antenna at the fading channel for a high-speed data transmission have been processed actively But the analysis about the interference of UWB system comes not to consist yet. So this paper analyzed the performance of the interference of UWB system to SFBC-OFDM and SFTC-OFDM system that applied a space block code which has a space diversity characteristic to OFDM system at MIMO channel. We shelved the performance that SFTC-OFDM system is robuster than SFBC-OFDM system under MB-OFDM UWB Interference.

Performance of SFBC OFDM Transmission Systems Using PSAM Technique (PSAM 방식의 SFBC OFDM 전송 시스템의 성능)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1031-1037
    • /
    • 2011
  • Pilot symbol assisted modulation (PSAM) can be used for the channel estimation in orthogonal frequency division multiplexing (OFDM) transmission systems. However, imperfect channel estimates in PSAM systems degrade the bit error rate (BER) performance. I derive the BER of PSAM OFDM systems over time dispersive fading channels. The BER performance of OFDM systems with SFBC antenna diversity are analyzed, where data is transmitted over time and frequency selective Rayleigh fading channel. The performance of this PSAM SFBC OFDM systems, gauged by the average bit error rate, is analyzed considering the channel estimation error.

A Differential SFBC-OFDM for a DMB System with Multiple Antennas

  • Woo, Kyung-Soo;Lee, Kyu-In;Paik, Jong-Ho;Park, Kyung-Won;Yang, Won-Young;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.195-202
    • /
    • 2007
  • A differential space-frequency block code - orthogonal frequency division multiplexing (SFBC-OFDM) scheme as a multiple-input multiple-output (MIMO) transmission technique for next-generation digital multimedia broadcasting (DMB) is proposed in this paper. A linear decoding method for differential SFBC, which performs comparably to the ML decoding method, is derived for the cases of two or four transmit antennas. A simple table lookup method is proposed to improve the efficiency of the encoding/decoding process of DSFBC for the case of non-constant modulus constellations. A DMB MIMO channel model, developed by extending the 3GPP MIMO model to fit DMB environments, is used to compare BER performances of differential space block code schemes for various channel environments. Simulation results show that the differential SFBC-16QAM scheme using either four transmit antennas with one receive antenna or two transmit antennas with two receive antennas achieves a performance gain of 12dB than that of the conventional DQPSK scheme, even with a data rate twice faster.

Performance Evaluation of SFBC and STBC Antenna Diversity OFDM Systems (SFBC와 STBC 안테나 다이버시티 OFDM 시스템의 성능 분석)

  • Choi Seung-kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.727-732
    • /
    • 2005
  • OFDM is a digital modulation technique where a single data symbol is transmitted at multiple subcarriers which are orthogonal to each other. With this technique, frequency diversity can be achieved. The performance of OFDM systems with SFBC and STBC antenna diversity are analyzed, where data is transmitted over time and frequency selective Rayleigh fading channel. The performance of this technique, gauged by the average bit error rate, is analyzed for the OFDM systems.

Performance Analysis of SFBC-OFDM Systems with a Antenna Selection using Pilot Symbols (파일럿 심볼을 이용한 안테나 선택방법을 적용한 SFBC-OFDM 시스템의 성능분석)

  • Kang, Heehoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.165-168
    • /
    • 2015
  • In this paper, we analyze a SFBC-OFDM(Space Frequency Block Code-Orthogonal Frequency Division Multiplexing) system with antenna selection method using pilot symbols. An antenna selection criterion is based on channel coefficients estimated from pilot symbols. At each frequency, the channel coefficients is arranged and the best is selected, and then data is sent to those antenna with the best coefficients. Also, The coding and diversity gain of the proposed system are analyzed.

Adaptive SFBC-OFDM with Pre-equalizer under Time-varying Multipath Fading Channel (시변 다중 경로 페이딩 환경에서 사전 등화기 기반 적응 변조 SFBC-OFDM 시스템에 관한 연구)

  • 고정선;김낙명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.623-630
    • /
    • 2004
  • The adaptive modulation along with SFBC transmit diversity is a very effective method to increase the capacity of an OFDM system. However, severe performance degradation is resulted when inter-symbol interference is applied due to frequency-selective fading in mobile communications. In this paper, we have proposed and analyzed an OFDM system with SFBC transmit diversity and adaptive modulation scheme based on pre-equalization methods, in order to increase the data transmission rate in the downlink without much increase in system complexity. By introducing subchannel grouping and the pre-equalization method among adjacent subchannels, we could enhance the efficiency of the adaptive modulation a lot. By computer simulation, it has been proven that the proposed schemes show a better BER and throughput performance than the conventional schemes under severely time-varying multipath fading channel.