• 제목/요약/키워드: SENet

검색결과 3건 처리시간 0.017초

HSE Block : SE Block을 활용한 합성곱 신경망 필터 수 자동 최적화 (HSE Block : Automatic Optimization of the Number of Convolutional Layer Filters using SE Block)

  • 김태욱;정현진;홍정희
    • 융합신호처리학회논문지
    • /
    • 제23권3호
    • /
    • pp.179-184
    • /
    • 2022
  • 본 논문은 탐색 알고리즘 없이 자동으로 모델의 합성곱 필터의 개수를 최적으로 결정할 방법에 대해 연구하고자 한다. 본 논문은 SENet에서 제안한 SE Block을 합성곱 신경망에 연결하고 하단의 학습하지 않는 합성곱 신경망을 연결한 HSE Block을 제안한다. HSE Block 모델에 두 개의 데이터셋을 이용하여 필터의 개수를 3 epoch 당 1개씩 증가시키는 실험과 필터 내의값에 따라 필터의 개수를 증가시키는 실험을 수행하였다. 이 실험을 바탕으로 한 층의 HSE Block이 아닌 다층의 HSE Block으로 모델을 구성하고, 기존의 실험할 때 사용한 데이터셋에 비해 더욱 학습하기 어려운 데이터셋을 사용하여 실험을 진행하였다. 기존보다 학습하기 어려운 데이터셋에 대해 HSE Block의 개수를 2개, 3개, 4개, 5개로 두고 실험을 수행함으로써 HSE Block의 효과를 검증하였다.

Training Data Sets Construction from Large Data Set for PCB Character Recognition

  • NDAYISHIMIYE, Fabrice;Gang, Sumyung;Lee, Joon Jae
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.225-234
    • /
    • 2019
  • Deep learning has become increasingly popular in both academic and industrial areas nowadays. Various domains including pattern recognition, Computer vision have witnessed the great power of deep neural networks. However, current studies on deep learning mainly focus on quality data sets with balanced class labels, while training on bad and imbalanced data set have been providing great challenges for classification tasks. We propose in this paper a method of data analysis-based data reduction techniques for selecting good and diversity data samples from a large dataset for a deep learning model. Furthermore, data sampling techniques could be applied to decrease the large size of raw data by retrieving its useful knowledge as representatives. Therefore, instead of dealing with large size of raw data, we can use some data reduction techniques to sample data without losing important information. We group PCB characters in classes and train deep learning on the ResNet56 v2 and SENet model in order to improve the classification performance of optical character recognition (OCR) character classifier.

딥러닝 모델 기반 위성영상 데이터세트 공간 해상도에 따른 수종분류 정확도 평가 (The Accuracy Assessment of Species Classification according to Spatial Resolution of Satellite Image Dataset Based on Deep Learning Model)

  • 박정묵;심우담;김경민;임중빈;이정수
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1407-1422
    • /
    • 2022
  • 본 연구는 분류(classification)기반 딥러닝 모델(deep learning model)인 Inception과 SENet을 결합한 SE-Inception을 활용하여 수종분류를 수행하고 분류정확도를 평가하였다. 데이터세트의 입력 이미지는 Worldview-3와 GeoEye-1 영상을 활용하였으며, 입력 이미지의 크기는 10 × 10 m, 30 × 30 m, 50 × 50 m로 분할하여 수종 분류정확도를 비교·평가하였다. 라벨(label)자료는 분할된 영상을 시각적으로 해석하여 5개의 수종(소나무, 잣나무, 낙엽송, 전나무, 참나무류)으로 구분한 후, 수동으로 라벨링 작업을 수행하였다. 데이터세트는 총 2,429개의 이미지를 구축하였으며, 그중약 85%는 학습자료로, 약 15%는 검증자료로 활용하였다. 딥러닝 모델을 활용한 수종분류 결과, Worldview-3 영상을 활용하였을 때 최대 약 78%의 전체 정확도를 달성하였으며, GeoEye-1영상을 활용할 때 최대 약 84%의 정확도를 보여 수종분류에 우수한 성능을 보였다. 특히, 참나무류는 입력 이미지크기에 관계없이 F1은 약 85% 이상의 높은 정확도를 보였으나, 소나무, 잣나무와 같이 분광특성이 유사한 수종은 오분류가 다수 발생하였다. 특정 수종에서 위성영상의 분광정보 만으로는 특징량 추출에 한계가 있을 수 있으며, 식생지수, Gray-Level Co-occurrence Matrix (GLCM) 등 다양한 패턴정보가 포함된 이미지를 활용한다면 분류 정확도를 개선할 수 있을 것으로 판단된다.