• 제목/요약/키워드: SENB

검색결과 22건 처리시간 0.025초

SENB 시험편의 측면함몰과 소성영역관계 (Relationship between Side-Necked Volume in a SENB specimen and Plastic Deformation Volume)

  • 이정현;김도형;김동학;강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.420-425
    • /
    • 2004
  • Lee and Kang measured side-necking deformation near a crack-tip for CT specimen using Stereoscopic Digital Speckle Photography and Digital Image Correlation. In this work the same technique was applied to SENB specimen. We happened to find that the deformation shape of the side-necking is similar to the one of plastic region estimated by McClictock using slip line theory. Based on volume constancy of plastic deformation as well as this finding, it is expected that a linear relationship holds between the volume of plastic deformation region and the one of side-necking upon the lateral surface of a specimen. To prove the idea, a preliminary study has been performed using 3-D finite element method on a model with modified boundary layer formulation. As the result, it is shown that the idea works well with acceptable error.

  • PDF

Fracture properties and crack tip constraint quantification of 321/690 dissimilar metal girth welded joints by using miniature SENB specimens

  • Bao, Chen;Sun, Yongduo;Wu, Yuanjun;Wang, Kaiqing;Wang, Li;He, Guangwei
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1924-1930
    • /
    • 2021
  • By using miniature SENB specimens, the fracture properties of the materials in the region of welded metal, 321 stainless steel heat affected zone, 690 alloy heat affected zone of 321/690 dissimilar metal girth welded joints were tested. Both the J-resistance curves and critical fracture toughness of the three different materials are affected by the crack size because of the effect of crack tip constraint. Groups of constraint corrected J-resistance curves of the three materials are obtained according to J-Q-M approach. The welded metals exhibit the best fracture resistance but the worst fracture resistance is observed in the material of 690 alloy heat affected zone.

R-Curve Behavior of Silicon Nitride at Elevated Temperatures

  • Sakaguchi, Shuji
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.331-335
    • /
    • 1998
  • R-curve, of three kinds of silicon nitride-based ceramics were measured, using single edge notched beam (SENB) method at room and at elevated temperatures, up to $1200^{\circ}C$. Stable fraacture was seen on ceramic materials with SENB specimens if the machined notch is deep enough, even though the crack resistance did not increase with crack length. Hot pressed silicon nitride did not show the rising R-curve behavior at room temperature, but it showed some rising at $1000^{\circ}C$ and above. Si3N4 reinforced with SiC whiskers showed no rising behavior at room and elevated temperatures, as it has smaller grain size, compare to the monolithic specimen. Gas pressure sintered silicon nitride had very large and elongated grains, and it showed rising R-curve even at room temperature. However, it showed some creep behavior at $1200^{\circ}C$ and the calculated R-curve on this condition did not show a good result. We cannot apply this technique on this condition for obtaining the R-curve.

  • PDF

Shear performance and design recommendations of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite beams

  • Zhuangcheng Fang;Jinpeng Wu;Bingxiong Xian;Guifeng Zhao;Shu Fang;Yuhong Ma;Haibo Jiang
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.319-336
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has attracted increasing attention in prefabricated steel-concrete composite beams as achieving the onsite construction time savings and structural performance improvement. The inferior replacement and removal efficiency of conventional prefabricated steel-UHPC composite beams (PSUCBs) has thwarted its sustainable applications because of the widely used welded-connectors. Single embedded nut bolted shear connectors (SENBs) have recently introduced as an attempt to enhance demountability of PSUCBs. An in-depth exploration of the mechanical behavior of SENBs in UHPC is necessary to evidence feasibilities of corresponding PSUCBs. However, existing research has been limited to SENB arrangement impacts and lacked considerations on SENB geometric configuration counterparts. To this end, this paper performed twenty push-out tests and theoretical analyses on the shear performance and design recommendation of SENBs. Key test parameters comprised the diameter and grade of SENBs, degree and sequence of pretension, concrete casting method and connector type. Test results indicated that both diameters and grades of bolts exerted remarkable impacts on the SENB shear performance with respect to the shear and frictional responses. Also, there was limited influence of the bolt preload degrees on the shear capacity and ductility of SENBs, but non-negligible contributions to their corresponding frictional resistance and initial shear stiffness. Moreover, inverse pretension sequences or monolithic cast slabs presented slight improvements in the ultimate shear and slip capacity. Finally, design-oriented models with higher accuracy were introduced for predictions of the ultimate shear resistance and load-slip relationship of SENBs in PSUCBs.

구속효과를 고려한 가스배관 결함의 파괴거동해석 (A Study on the Fracture Behavior of a Crack in Gas Pipelines Considering Constraint Effects)

  • 심도준;최재붕;김영진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.1-6
    • /
    • 2000
  • FFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it assumes that J-integral uniquely characterizes crack-tip stress-strain fields. However, it has been shown that it is not sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to Investigate the fracture behavior of a crack in gas pipeline by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature$(24^{\circ}C)$ and low temperature$(-40^{\circ}C)$ to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects.

  • PDF

혼합모드 하중을 받는 균열시편의 피로균열진전거동 평가 (Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads)

  • 한정우;우은택;한승호
    • 대한기계학회논문집A
    • /
    • 제39권7호
    • /
    • pp.693-700
    • /
    • 2015
  • 혼합모드 피로하중을 받는 균열을 갖은 CTS 시편에 대하여 균열경로 예측이론과 Tanaka 의 등가 응력확대계수식을 적용하여 피로균열진전거동을 평가하였다. 새롭게 생성되는 균열선단의 응력확대계수 산정은 ANSYS 를 이용한 유한요소법을 통해 이루어졌고, 균열경로와 균열증분은 마이크로소프트 엑셀에 프로그래밍한 균열경로예측식과 Paris 식으로 계산되었다. 균열증분으로 새롭게 생성된 균열선단의 기하학적인 정보는 엑셀의 기능을 이용해 ANSYS 의 KSCON 명령어가 인식할 수 있게 변화시켜 균열모델링을 용이하게 하였다. 반복적인 균열해석을 위해 유한요소법과 엑셀을 결합한 FECTUM(Finite Element Crack Tip Updating Method)을 개발하였다. 개발된 FECTUM 을 편측 3 점 굽힘을 통해 혼합모드의 구현이 가능한 SENB 시편(Single Edge Notched Bend Specimen)에 적용해본 결과, 균열경로는 물론 파단될 때까지의 피로하중 반복수의 차이가 3% 미만으로 잘 일치하는 모습을 보여, 개발된 기법의 타당성을 검증하였다.

코디어라이트-SiC위스커 복합재료에서 측정방법에 따른 파괴인성치의 변화 (Influence of Testing Method on the Fracture Toughness of Cordierite-SiC Whisker Ceramic Composites)

  • 강대갑
    • 한국세라믹학회지
    • /
    • 제24권4호
    • /
    • pp.313-320
    • /
    • 1987
  • Fracture toughness of hot pressed cordierite-SiC whisker ceramic composites contained up to 40vol.% SiC whiskers were determined by using the indentation crack length(IC), indentation strengthin-bending(IS), and single-edge notched-beam(SENB) methods. The results were compared to stress intensity factor, KB, at the crack branching boundary measured by using the mirror zone radius (MZ) method. IS method seems to provide a more reasonable estimation of fracture toughness than other methods for these composites.

  • PDF

구속효과를 구려한 가스배관 결함의 2차원적 파괴거동 해석에 관한 연구 (A Study on the Fracture Behavior of a Two Dimensional Crack in Gas Pipelines Considering Constraint Effects)

  • 심도준;장영균;최재붕;김영진;김철만
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.61-69
    • /
    • 2001
  • EFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it is assumed that the J-integral uniquely characterizes the crack-tip stress-strain field. However, it has been proven that the J-integral alone can not be sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to investigate the fracture behavior of a crack in gas pipeline(KS D 3507) by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature(24$\^{C}$) and low temperature(-40$\^{C}$) to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects. For precise assessment of cracks, especially shallow cracks, in KS D 3507 pipeline, constraint effect must be considered.

쐐기 분열 시험을 이용한 암석의 모드 I 파괴인성 측정 (Determination of Mode I Fracture Toughness of Rocks Using Wedge Splitting Test)

  • 고태영;김택곤;이대혁
    • 터널과지하공간
    • /
    • 제29권6호
    • /
    • pp.523-531
    • /
    • 2019
  • 암석역학이나 암반공학의 여러 활용 분야 중 발파, 천공 및 기계굴착의 경우에는 파괴인성이 중요한 요소이며, 암석의 파괴인성을 측정하기 위한 여러 가지 방법들이 제안되었다. 본 연구에서는 간단히 시험편을 제작할 수 있고, 압축 하중으로 암석의 모드 I 파괴인성을 구할 수 있도록 쐐기 분열 시험편(Wedge Splitting Test Specimen)을 이용하였다. 쐐기의 작용하는 연직하중에 의한 수직 및 수평하중 모두를 고려한 균열선단의 응력상태로부터 수치해석을 통한 응력확대계수의 식을 제안하였다. 쐐기 분열 시험편에 의해 구해진 모드 I 파괴인성값을 GD와 SENB 시험편의 시험 결과와 비교하여 시험법의 타당성을 확인하였다.