• Title/Summary/Keyword: SEM morphology

Search Result 1,854, Processing Time 0.03 seconds

Formation and Related-Behavior of Micro-bowl Morphology Consisting of Ionic Palladium(II) Complexes

  • Kim, Cho-Rong;Kim, Chi-Won;Noh, Tae-Hwan;Lee, Young-A;Hong, Jong-Ki;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2223-2227
    • /
    • 2010
  • Reaction of [(bpy)Pd]$(PF_6)_2$ (bpy = 2,2'-bipyridine) with racemic bis(isonicotinoyl)-1,1'-bi-2-naphtholate (L) in acetone, and followed by addition of chloroform and solvent evaporation allows to form amorphous micro-bowl morphology consisting of $[(bpy)PdL]_2(PF_6)_4$ without any template or additive. In contrast, the reaction and recrystallization in acetone for 1 week produce parallel-piped single crystals consisting of $[(bpy)_3Pd_3({\mu}_3-HPO_4)_2](PF_6)_2$. The formations of micro-bowl and parallel-piped single crystal morphologies appear to be primarily associated with the kinetic and thermodynamic control, respectively. The formation of micro-bowls may be attributed to eruption of organic solvents. Cosolvent effects and chemical properties on the formation of micro-bowl morphology have been observed.

Change of Surface and Electrical Characteristics of Silicon Wafer by Wet Etching(1) - Surface Morphology Changes as a Function of HF Concentration - (습식 식각에 의한 실리콘 웨이퍼의 표면 및 전기적 특성변화(1) - 불산 농도에 따른 표면형상 변화 -)

  • Kim, Jun-Woo;Kang, Dong-Su;Lee, Hyun-Yong;Lee, Sang-Hyeon;Ko, Seong-Woo;Roh, Jae-Seung
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.316-321
    • /
    • 2013
  • The electrical properties and surface morphology changes of a silicon wafer as a function of the HF concentration as the wafer is etched were studied. The HF concentrations were 28, 30, 32, 34, and 36 wt%. The surface morphology changes of the silicon wafer were measured by an SEM ($80^{\circ}$ tilted at ${\times}200$) and the resistivity was measured by assessing the surface resistance using a four-point probe method. The etching rate increased as the HF concentration increased. The maximum etching rate 27.31 ${\mu}m/min$ was achieved at an HF concentration of 36 wt%. A concave wave formed on the wafer after the wet etching process. The size of the wave was largest and the resistivity reached 7.54 $ohm{\cdot}cm$ at an 30 wt% of HF concentration. At an HF concentration of 30 wt%, therefore, a silicon wafer should have good joining strength with a metal backing as well as good electrical properties.

Growth and Characterization of Vertically Aligned ZnO nanowires with different Surface morphology

  • Das, S.N.;Choi, J.H.;Kar, J.P.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.35.1-35.1
    • /
    • 2009
  • Vertically aligned zinc oxide (ZnO) nanorods (NRs) with different surface morphology were grown by metal organic chemical vapor deposition (MOCVD) on sapphire substrate. The films thus prepared were characterized by measuring X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) studies. To study the effect of surface morphology on wettability, the contact angle (CA) of water was measured. It was demonstrated that the CA of the deposited ZnO NRs varied between $104^{\circ}$ and $135^{\circ}$ depending upon the surface morphology. Variable temperature photoluminescence (PL) have employed to probe the exciton recombination in high density and vertically aligned ZnO Nanorod arrays. The low-temperature PL characterizes the dominant near-band-edge excitonic emissions from such nanorod arrays.

  • PDF

Effect of Kind and Thickness of Seed Metal on the Surface Morphology of Copper Foil (Seed 금속의 종류와 두께에 따른 구리 전착층의 표면형상에 미치는 영향)

  • Woo, Tae-Gyu;Park, Il-Song;Seol, Kyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.283-288
    • /
    • 2007
  • This study aimed to investigate the effects of the seed layer with copper electroplating on the surface morphology of copper foil. Three kinds of seed metal such as platinum, palladium, Pt-Pd alloy were used in this study. Electrodeposition was carried out with the constant current density of 200 $mA/cm^2$ for 68 seconds. Electrochemical experiments, in conjunction with SEM, XRD, AFM and four-point probe, were performed to characterize the morphology and mechanical characteristics of copper foil. Large particles were observed on the surface of the copper deposition layer when a copper foil was electroplated on the 130 nm thickness of Pd, Pt-Pd seed layer. However, a homogeneous surface, low resistivity was obtained when the 260 nm thickness of Pt, Pt-Pd alloy seed layer was used. The minimum value of resistivity was 2.216 ${\mu}{\Omega}-cm$ at the 260 nm thickness of Pt-Pd seed layer.

Impact Characteristics and Morphology of Nylon 6/Polypropylene Blends (Nylon 6/Polypropylene 블렌드의 충격특성 및 모폴로지)

  • Kim, Jong-Guk;Yun, Ju-Ho;Go, Jae-Song;Choe, Hyeong-Gi;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.10-15
    • /
    • 2002
  • Melt blends of maleic anhydride grafted polypropylerle(PP-g-MA) and Nylon 6 were prepared to study the influence of chemical reaction between the two polymer components. By adding the MA grafted polystyrene pold (ethylene/butadiene) and polystyrene[SEBS-g-MA] as the compatible modifiers to reinforce the impact resistance, the Izod impact strength, high rate impact strength and morphology were studied. The notched Izod impact strength increased with the content of PP-g-MA and SEBS- g-MA. The energy of high rate impact strength increased as the thickness of specimen increased, while, it increased as the specimen displacement decreased. In the morphology observed by SEM, finally, we confirmed the improvement of the compatibilization and interfacial adhesion with the content of SEBS-g-MA. The continuous phase of PP-g-MA was the main cause of the modified properties.

The Evolution of Preferred Orientation and Morphology of NiO Thin Films under Variation of Plasma gas and RF Sputtering Power (플라즈마 가스와 RF 파워에 따른 NiO 박막의 우선배향성 및 표면형상 변화)

  • Ryu Hyun-Wook;Choi Gwang-Ryo;Noh Whyo-Sup;Park Yong-Ju;Kwon Yong;Park Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.121-125
    • /
    • 2004
  • Nickel oxide (NiO) thin films were deposited on Si(100) substrates at room temperature by RF magnetron sputtering from a NiO target. The effects of plasma gas and RF power on the crystallographic orientation and surface morphology of the NiO films were investigated. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were employed to characterize the deposited film. It was found that the type of plasma gases affected the crystallographic orientation, deposition rate, surface morphology, and crystallinity of NiO films. Highly crystalline NiO films with (100) orientation were obtained when it was deposited under Ar atmosphere. On the other hand, (l11)-oriented NiO films with poor crystallinity were deposited in $O_2$. Also, the increase in RF power resulted in not only higher deposition rate, larger grain size, and rougher surface but also higher crystallinity of NiO films.

Morphology and Thermal Properties of PPS/ABS Blends (PPS/ABS 블렌드의 형태학적/열적 특성)

  • 이영관;김준명;남재도;박찬석;장승필
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.366-373
    • /
    • 2000
  • In this study, the PPS/ABS blend system was investigated in order to collectively identify the relationship among blend morphology, chemical compatibilization and thermal property. ABS resin was chemically modified by the incorporation of maleic anhydride through reactive extrusion for enhanced compatibilization, and PPS, ABS and the modified ABS were blend by a sing twin screw extruder. The effect of chemical modification of ABS on the morphological, mechanical, and thermal properities of the resulting blend was examined. A strong interaction was observed between PPS and MABS by optical microsopy as well as scanning electron microscopy, exhibiting a well-dispersed morphological feature. The PPS/MABS blend showing a single glass transition temperature was observed in dynamic mechanical analysis, demonstrating a pseudo-homogeneous phase morphology induced by chemical compatibilization. PPS/MABS blend also exhibited an enhanced thermal stability and heat distortion temperature compared with modified PPS/ABS blend.

  • PDF

Comparative achene morphology of Persicaria sect. Cephalophilon and related taxa (Polygonaceae)

  • KONG, Min-Jung;HONG, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.48 no.2
    • /
    • pp.134-142
    • /
    • 2018
  • The achene morphology of 21 taxa of Persicaria sect. Cephalophilon including the related taxa of Koenigia (Polygonaceae) was examined using stereo microscopy and scanning electron microscopy to evaluate its diagnostic values and taxonomic implications. The outlines of achene were narrowly ovoid to broadly ovoid in general, and elliptic achenes were observed in Koenigia taxa, with the achene shape being biconvex or trigonous. The size of the P. sect. Cephalophilon taxa ranged from $0.93-3.55{\times}0.80-2.31mm$ and the size of examined Koenigia taxa ranged from $1.10-1.84{\times}0.79-1.02mm$. The smallest achenes in P. sect. Cephalophilon were observed in P. humilis and the largest achenes were found in P. chinensis var. chinensis. Furthermore, infraspecific taxa of P. chinensis had relatively large achenes compared to other taxa within the section. Most taxa of P. sect. Cephalophilon had dull achenes, while four taxa had glossy achenes (P. capitata, P. runcinata var. runcinata, P. runcinata var. sinensis, and P. sinuata). Four types of surface patterns (smooth, tubercles, small pits, and irregular ridge) were observed, and the tubercles were divided into two subtypes according to the grouping and distribution pattern. The achene morphology of P. sect. Cephalophilon is described and compared, and its taxonomic implications are also discussed.

Design optimization for analysis of surface integrity and chip morphology in hard turning

  • Dash, Lalatendu;Padhan, Smita;Das, Sudhansu Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.561-578
    • /
    • 2020
  • The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.

Synthesis and Characterization of Y2O3 Powders by a Modified Solvothermal Process

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.78-81
    • /
    • 2012
  • $Y_2O_3$ nanomaterials have been widely used in transparent ceramics and luminescent devices. Recently, many studies have focused on controlling the size and morphology of $Y_2O_3$ in order to obtain better material performance. $Y_2O_3$ powders were prepared under a modified solvothermal condition involving precipitation from metal nitrates with aqueous ammonium hydroxide. The powders were obtained at temperatures at $250^{\circ}C$ after a 6h process. The properties of the $Y_2O_3$ powders were studied as a function of the solvent ratio. The synthesis of $Y_2O_3$ crystalline particles is possible under a modified solvothermal condition in a water/ethylene glycol solution. Solvothermal processing condition parameters including the pH, reaction temperature and solvent ratio, have significant effects on the formation, phase component, morphology and particle size of yttria powders. Ethylene glycol is a versatile, widely used, inexpensive, and safe capping organic molecule for uniform nanoparticles besides as a solvent. The characterization of the synthesized Y2O3 powders were studied by XRD, SEM (FE-SEM) and TG/DSC. An X-ray diffraction analysis of the synthesized powders indicated the formation of the $Y_2O_3$ cubic structure upon calcination. The average crystalline sizes and distribution of the synthesized $Y_2O_3$ powders was less than 2 um and broad, respectively. The synthesized particles were spherical and hexagonal in shape. The morphology of the synthesized powders changed with the water and ethylene glycol ratio. The average size and shape of the synthesized particles could be controlled by adjusting the solvent ratio.