• 제목/요약/키워드: SELEX(Systematic evolution of ligands by exponential enrichment)

검색결과 12건 처리시간 0.026초

Development of a biosensor from aptamers for detection of the porcine reproductive and respiratory syndrome virus

  • Kuitio, Chakpetch;Rasri, Natchaya;Kiriwan, Duangnapa;Unajak, Sasimanas;Choowongkomon, Kiattawee
    • Journal of Veterinary Science
    • /
    • 제21권5호
    • /
    • pp.79.1-79.12
    • /
    • 2020
  • Background: Recently, the pork industry of Thailand faced an epidemic of highly virulent strains of porcine reproductive and respiratory syndrome virus (PRRSV), which spread throughout Southeast Asia, including the Lao People's Democratic Republic and Cambodia. Hence, the rapid and on-site screening of infected pigs on a farm is essential. Objectives: To develop the new aptamer as a biosensor for detection PRRSV which are rapid and on-site screening of infected pig. Methods: New aptamers against PRSSV were identified using the combined techniques of capillary electrophoresis, colorimetric assay by gold nanoparticles, and quartz crystal microbalance (QCM). Results: Thirty-six candidate aptamers of the PRRSV were identified from the systematic evolution of ligands by exponential enrichment (SELEX) by capillary electrophoresis. Only 8 out of 36 aptamers could bind to the PRSSV, as shown in a colorimetric assay. Of the 8 aptamers tested, only the 1F aptamer could bind specifically to the PRSSV when presented with the classical swine fever virus and a pseudo rabies virus. The QCM was used to confirm the specificity and sensitivity of the 1F aptamer with a detection limit of 1.87 × 1010 particles. Conclusions: SELEX screening of the aptamer equipped with capillary electrophoresis potentially revealed promising candidates for detecting the PRRSV. The 1F aptamer exhibited the highest specificity and selectivity against the PRRSV. These findings suggest that 1F is a promising aptamer for further developing a novel PRRSV rapid detection kit.

Electrochemical Detection of $17{\beta}-estradiol$ by using DNA Aptamer Immobilized Nanowell Gold Electrodes

  • Kim, Yeon-Seok;Jung, Ho-Sup;Lee, Hea-Yeon;Kawai, Tomoji;Gu, Man-Bock
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.88-92
    • /
    • 2005
  • Aptamer is the single-stranded oligonucleotide which binds to various target molecules such as proteins, peptides, lipids and small organic molecules with high affinity and specificity. DNA aptamers specific for the $17{\beta}-estradiol$ were selected by SELEX (Systematic Evolution of Ligands by EXponential enrichment) process from a random DNA library. These DNA aptamers have a high affinity to $17{\beta}-estradiol$ as an endocrine disrupting chemical. Nanowell and $200{\mu}m$ gold electrode were used as substrate for DNA aptamer immobilization and electrochemical analysis. Especially, nanowell gold electrode was fabricated by e-beam lithography. The size of single nanowell is 130nm and 40,000 nanowells were deposited on one gold electrode. The immobilization method was based on the interaction between the biotinylated aptamer and streptavidin deposited on gold electrode previously. Immobilization procedure was optimized by surface plasma resonance (SPR) and electrochemical analysis. After the immobilization of DNA aptamer on streptavidin modified gold electrode, $17{\beta}-estradiol$ solution was treated on aptamer immobilized gold electrode. The current of gold electrode was decreased by the binding of $17{\beta}-estradiol$ to DNA aptamer immobilized on gold electrode. However, in negative control experiments of 1-aminoanthraquinone and 2-methoxynaphthalene, the current was rarely decreased. And more sensitive data was obtained from nanowell gold electrode comparing with $200{\mu}m$ gold electrode.

  • PDF