Park, Seon-Ah;Yin, Hua;Bhattarai, Janardhan P.;Park, Soo-Joung;Han, Seong-Kyu
International Journal of Oral Biology
/
v.34
no.4
/
pp.191-197
/
2009
Somatostatin (SST) is a known neuromodulator of the central nervous system. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) receives many thinmyelinated $A{\delta}$-fiber and unmyelinated C primary afferent fibers and is involved in nociceptive processing. Many studies have demonstrated that SST plays a pivotal role in pain modulation in the spinal cord. However, little is yet known about the direct effects of SST on the SG neurons of the Vc in adult mice. In our present study, we investigated the direct membrane effects of SST and a type 2 SST receptor agonist, seglitide (SEG), on the SG neurons of the Vc using a gramicidin-perforated current clamp in adult mice. The majority (53%, n = 27/51) of the adult SG neurons were hyperpolarized by SST (300 nM) but no differences were found in the hyperpolarization response rate between males and females. When SST was applied successively, the second response was smaller ($76{\pm}9.5%$, n=19), suggesting that SST receptors are desensitized by repeated application. SST-induced hyperpolarization was also maintained under conditions where presynaptic events were blocked ($75{\pm}1.0%$, n=5), suggesting that this neuromodulator exerts direct effects upon postsynaptic SG neurons. SEG was further found to induce membrane hyperpolarization of the SG neurons of the Vc. These results collectively demonstrate that SST inhibits the SG neuronal activities of the Vc in adult mice with no gender bias, and that these effects are mediated via a type 2 SST receptor, suggesting that this is a potential target for orofacial pain modulation.
The SyncML, the standard synchronization protocol, supports the synchronization of various application services between a client and a server such as an address book, a calendar. Even with this standard protocol, SyncML application developers usually spend a long time and efforts implementing service specific logics and databases. This paper designed and implemented the SDE(Service Development Environment) which is an integrated development environment for SyncML server developers to develop an application service rapidly and correctly. The SDE consists of two components i.e., the Sync Library and the SEG(Sync Engine Generator) tool. To prove the applicability of this study we implemented a SyncML server by using the SDE and also carried out the correctness tests and the performance test. We hope this system helps developers implement mobile application services more efficiently.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.12
/
pp.2355-2362
/
2016
Seg fog removal is an important issue concerned by both computer vision and image processing. Sea fog or haze removal is widely used in lots of fields, such as automatic control system, CCTV, and image recognition. Color image dehazing techniques have been extensively studied, and expecially the dark channel prior(DCP) technique has been widely used. This paper propose a fast and efficient image prior - dark channel prior to remove seg-fog from a single digital image based on the GPU. We implement the basic parallel program and then optimize it to obtain performance acceleration with more than 250 times. While paralleling and the optimizing the algorithm, we improve some parts of the original serial program or basic parallel program according to the characteristics of several steps. The proposed GPU programming algorithm and implementation results may be used with advantages as pre-processing in many systems, such as safe navigation for ship, topographical survey, intelligent vehicles, etc.
3D seismic data processing methods such as full waveform inversion or reverse-time migration require 3D wave propagation modeling and heavy calculations. We compared efficiency and accuracy of a Xeon Phi coprocessor to those of a high-end server CPU using 3D frequency-domain wave propagation modeling. We adopted the OpenMP parallel programming to the time-domain finite difference algorithm by considering the characteristics of the Xeon Phi coprocessors. We applied the Fourier transform using a running-integration to obtain the frequency-domain wavefield. A numerical test on frequency-domain wavefield modeling was performed using the 3D SEG/EAGE salt velocity model. Consequently, we could obtain an accurate frequency-domain wavefield and attain a 1.44x speedup using the Xeon Phi coprocessor compared to the CPU.
We calculated 3D frequency- and Laplace-domain wavefields using time-domain modeling and Fourier transform or Laplace transform. We adopted OpenACC and GPU for an efficient parallel calculation. The OpenACC makes it easy to use GPU accelerators by adding directives in conventional C, C++, and Fortran programming languages. Accordingly, one doesn't have to learn new GPGPU programming languages such as CUDA or OpenCL to use GPU. An OpenACC program allocates GPU memory, transfers data between the host CPU and GPU devices and performs GPU operations automatically or following user-defined directives. We compared performance of 3D wave propagation modeling programs using OpenACC and GPU to that using single-core CPU through numerical tests. Results using a homogeneous model and the SEG/EAGE salt model show that the OpenACC programs are approximately 53 and 30 times faster than those using single-core CPU.
Conventional lane detection algorithms have problems in that the detection rate is lowered in road environments having a large change in curvature and illumination. The probabilistic Hough transform method has low lane detection rate since it exploits edges and restrictive angles. On the other hand, the method using a sliding window can detect a curved lane as the lane is detected by dividing the image into windows. However, the detection rate of this method is affected by road slopes because it uses affine transformation. In order to detect lanes robustly and avoid obstacles, we propose driving assist system using semantic segmentation based on deep learning. The architecture for segmentation is SegNet based on VGG-16. The semantic image segmentation feature can be used to calculate safety space and predict collisions so that we control a vehicle using adaptive-MPC to avoid objects and keep lanes. Simulation results with CARLA show that the proposed algorithm detects lanes robustly and avoids unknown obstacles in front of vehicle.
We perform the frequency-domain waveform inversion based on the residual-selection strategy. In the residual-selection strategy, we classify time-domain residual wavefields into several groups according to the order of absolute amplitudes. Because the residual wavefields are normalized after regularization of the gradient directions within each group, the residual-selection strategy plays a role in enhancing the small-amplitude wavefields, which contributes to improving the deep parts of inverted subsurface images. After classifying residuals in the time domain, they are transformed to the frequency domain. Waveform inversion is performed in the frequency domain using the back-propagation technique which has been popularly used in reverse-time migration. The residual-selection strategy is applied to the SEG/EAGE salt and IFP Marmousi models. Numerical results show that the residual-selection strategy yields better results than the conventional frequency-domain waveform inversion.
In this study, we simulated 3D wave propagation modeling using a Xeon Phi x200 processor and compared the parallel computation performance with that using a Xeon CPU. Unlike the 1st generation Xeon Phi coprocessor codenamed Knights Corner, the 2nd generation x200 Xeon Phi processor requires no additional communication between the internal memory and the main memory since it can run an operating system directly. The Xeon Phi x200 processor can run large-scale computation independently, with the large main memory and the high-bandwidth memory. For comparison of parallel computation, we performed the modeling using the MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) libraries. Numerical examples using the SEG/EAGE salt model demonstrated that we can achieve 2.69 to 3.24 times faster modeling performance using the Xeon Phi with a large number of computational cores and high-bandwidth memory compared to that using the 12-core CPU.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.39
no.3
/
pp.157-165
/
2021
Recently, as the spatial resolution of satellite and aerial images has improved, various studies using remotely sensed data with high spatial resolution have been conducted. In particular, since the building extraction is essential for creating digital thematic maps, high accuracy of building extraction result is required. In this manuscript, building extraction models were generated using SegNet, U-Net, FC-DenseNet, and HRNetV2, which are representative semantic segmentation models in deep learning techniques, and then the evaluation of building extraction results was performed. Training dataset for building extraction were generated by using aerial orthophotos including various buildings, and evaluation was conducted in three areas. First, the model performance was evaluated through the region adjacent to the training dataset. In addition, the applicability of the model was evaluated through the region different from the training dataset. As a result, the f1-score of HRNetV2 represented the best values in terms of model performance and applicability. Through this study, the possibility of creating and modifying the building layer in the digital map was confirmed.
This study is a study on classifying land cover by applying high-resolution satellite images to deep learning algorithms and verifying the performance of algorithms for each spatial object. For this, the Fully Convolutional Network-based algorithm was selected, and a dataset was constructed using Kompasat-3 satellite images, land cover maps, and forest maps. By applying the constructed data set to the algorithm, each optimal hyperparameter was calculated. Final classification was performed after hyperparameter optimization, and the overall accuracy of DeeplabV3+ was calculated the highest at 81.7%. However, when looking at the accuracy of each category, SegNet showed the best performance in roads and buildings, and U-Net showed the highest accuracy in hardwood trees and discussion items. In the case of Deeplab V3+, it performed better than the other two models in fields, facility cultivation, and grassland. Through the results, the limitations of applying one algorithm for land cover classification were confirmed, and if an appropriate algorithm for each spatial object is applied in the future, it is expected that high quality land cover classification results can be produced.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.