• Title/Summary/Keyword: SEEP/W

Search Result 54, Processing Time 0.022 seconds

Unsteady Modeling for River Bank Infiltration Flow (하천 제방 침투 흐름의 비정상 모델링)

  • Lee, Nam-Joo;Kim, Hyelim;Yu, Kwonkyu;Yang, Moonyong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.465-466
    • /
    • 2011
  • 이 연구는 일본식 배수공이 설치된 제방의 침투 흐름을 비정상 상태로 SEEP/W 모형을 사용하여 해석하고 모형의 적용성을 평가하기 위해 수행하였다. 수치모형의 적용성 평가를 위해 비정상 상태로 제방 침투에 대한 수리모형실험을 수행하였다. 제체 재료는 경상북도 구미시에 위치한 해평천의 제방 건설 현장의 재료를 사용하였고 일본식배수공은 굵은 골재와 부직포를 사용하여 실험실에 제방 축소 모형을 수조 내부에 제작하였다. 모형제방은 제방축조 방법과 유사하게 다짐을 하기 위해 흙을 쌓으면서 0.20 m 높이마다 다짐을 실시하였다. 다짐방법은 고무망치를 이용한 층다짐을 하였다. 제방 제외지에 0.55 cm/min의 속도로 수위를 증가하여 15분 간격으로 각 0.3 m, 0.4 m, 0.5 m 수위에 따른 비정상 상태의 위압계 측정을 수행하였다. SEEP/W 모형의 매개변수는 투수계수와 입도분포도, 불포화 함수특성곡선(값을 산정하기 어려움)이 있으며, 각 매개변수에 대한 민감도 분석을 수행하였다. SEEP/W 모형의 모의 결과는 수리모형실험 결과와 비교적 잘 일치함을 알 수 있었다.

  • PDF

Implementation of Coupled Hydro-Mechanical Problems in Partially Saturated Soils (불포화 지반에 물의 침투와 흙의 변형이 사면의 안정성에 미치는 영향)

  • Kim, Jaehong;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.35-43
    • /
    • 2010
  • Partially saturated permeability should be defined by the function of suction (or degree of saturation) and porosity. However, commercial software and most researchers' model often describe as the function of suction. The stability of a soil slope can be affected by both hydraulic and shear strength properties of partially saturated soils. For both studies, we generally use an uncoupled seepage analysis program Seep/W(Geo-Slope, 2007) and a series stress-deformation analysis program Sigma/W, or slope stability analysis program Slope/W. Seep/W is performed for simulations of partially saturated flow problems in non-deformable soil media. However, under real situations, the water flow processes in a deformable soil are influenced by soil skeleton movement and the pore water pressure changed due to seepage will lead to changes in stresses and to deformation of a soil. Many researchers are currently developing their models for solving coupled hydro-mechanical problems to simulate slope stability during a rainstorm. For a proper implementation in the field, the developed model should be still needed in order to achieve appropriate accuracy of the solution for coupled hydro-mechanical problems in soil slope stability. Thus, the paper presents the comparison of slope stability between uncoupled and coupled analyses of seepage and stress deformation problems.

Numerical Analysis of the Stability of a Tailings Dump Slope using Field Monitoring Results (현장 모니터링 결과를 이용한 광미 적치사면 안정성의 수치해석적 연구)

  • Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • Variations in matric suction were compared between field measurements and numerical analysis for a tailings dump slope. We performed an analysis of slope stability using precipitation records measured in the field, selecting the period (72 hours) of highest rainfall intensity during the field monitoring, for which the matric suction and rainfall records measured in the field were analyzed. In addition, we applied the precipitation records of this period to the numerical analysis. SEEP/W and SLOPE/W were used to analyze the seepage flow in the slope due to rainfall and to investigate the slope stability considering the wetting front depth from the ground surface, respectively. The seepage analysis, using SEEP/W, was carried out on the rainfall data obtained in the field. Comparisons between the field monitoring data and simulation results for matric suction show some quantitative difference but similar patterns of temporal variation. According to the results of slope stability analysis using SLOPE/W and the results of seepage analysis, the safety factor of the slope showed a sudden increase at the point of rapid increase in rainfall intensity. It then recovered because subsequent rainfall was scarce. Therefore, the stability of the tailings dump slope can be reasonably estimated if seepage and slope stability analyses, based on precipitation records, have been carried out.

Evaluation of Drainage System and Coupled Analysis of Heat Transfer and Water Flow for Ice Ring formation in Daejeon LNG Pilot Cavern (대전 LNG Pilot Cavern에서의 배수시스템 평가 및 Ice Ring 형성에 관한 냉열수리 연동해석)

  • Jeong Woo-Cheol;Lee Hee-Suk;Lee Dae-Hyuck;Kim Ho-Yeong;Choi Young-Tae
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.38-49
    • /
    • 2006
  • LNG storage in lined rock cavern demands various techniques concerned with rock mechanics, thermo-mechanics and hydrogeology in design, construction and maintenance stage. LNG pilot cavern was constructed in Daejeon in order to verify these techniques. In this paper, evaluation of drainage system and ice ring formation was studied by numerical simulation. By Modflow analysis in the viewpoint of aquifer and Seep/W analysis in the viewpoint of flow system, it was verified that the drainage system in the pilot cavern was efficiently operated. Since ice ring formation can be simulated by interactive relation between heat transfer and water flow, coupled analysis of those was performed. In this analysis, the position of ice ring was presumed and it was demonstrated that the formation is affected by velocity and direction of groundwater flow.

A methodological approach for slope stability analysis in Steady state infiltration (정상류 침투를 가정한 강우시 사면안정해석기법)

  • Song, Pyung-Hyun;You, Byung-Ok;Ahn, Kwang-Kuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.736-744
    • /
    • 2009
  • The abrupt failure of slope caused by a concentrated rainfall would be a disaster in this country. Specially, the soil slope may be collapsed by the rainfall seepage, however, there is not much information for the mechanism of slope failure during rainfall. As analyzing the stability of slope by rainfall, the conventional method is to put the ground-water level on the surface of slope. However, it may provide the over-reinforcement for the slope stability. Futhermore, although over-reinforcement for the slope was fulfilled, the possibility of potential slope failure still exists. In this study, the slope stability by the conventional design method and the causes of unstable slope during rainfall were investigated. To analyze the slope stability by rainfall, the computer program SEEP/W for the analysis of seepage was used. As changing the intensity and duration of rainfall in SEEP/W, the analysis were performed. After completion of analysis, the porewater pressure data from SEEP/W was applied to SLOPE/W. As a results of this analysis, it is not reasonable that the groundwater level is going up to the surface of slope during rainfall. Therefore, the conventional reinforcement for the slope stability is not obvious to satisfy the criterion safety factor during rainfall. The reasonable counterplan is to install drainage hole on the surface of slope in order to prevent erosion and debris flow.

  • PDF

A study on Characteristic of Groundwater level according to Rainfall Intensity (강우강도에 따른 지하수위 특성에 관한 연구)

  • You, Seung-Yeon;Moon, Young-Il;Oh, Tae-Suk;Shin, Dong-Jun;Lee, Su-Gon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.501-504
    • /
    • 2007
  • Slope-related disasters have occurred in the rainy season. It can be assumed that one of the most important factor slope-related disasters is rainfall intensity. Slope-related disasters occurred in relatively short time and had characteristics that lead to huge damage. Therefore, if rainfall characteristics were applied to estimate slope stability effectively, slope-related disasters could be predicted and prepared in advance. In this study, the SEEP/W program was used and the frequency rainfall estimated by using precipitation data($1961{\sim}2005$) in Seoul was applied to analyze the change of groundwater level according to rainfall intensity.

  • PDF

Analysis of Groundwater Level Change at Slops considering Regional Precipitation and Soil Characteristic (지역별 강우 및 토양특성을 고려한 경사면에서의 지하수위 변동분석)

  • Lee, Il-Ju;Choi, Byung-Kyu;Kim, Kyoung-Wook;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1934-1938
    • /
    • 2009
  • 본 연구에서는 과거부터 다양한 형태로 발생한 산사태의 주요 원인을 파악하고 우리나라에서 산사태 발생을 유발시키는 요인과 그 특성을 분석하기 위해 현재까지 발생한 산사태의 붕괴 지역을 조사하고 주요 원인을 강우, 토양, 침투, 경사의 4가지 경우로 나누어 이에 대한 지역별 특성을 조사 분석하였다. 분석방법으로는 지역별 확률 강우량 산정 후, 이를 토대로 침투량과 유출량을 분리하여 경사면에서의 침투거동과 지하수위 변화양상을 살펴보기 위해 SEEP/W를 이용하여 지역별 산사태 붕괴원인을 분석하였다. 그 결과, 일부지역을 제외한 대부분 지역에서 강우량이 증가함에 따라 지하수위가 선형적으로 증가하는 것으로 나타났으며, 이러한 피해형태는 사면의 위치별로 다르게 나타고 있어 지역별로 산사태 붕괴원인에 따른 적합한 대처가 필요한 것으로 분석되었다.

  • PDF

A study on the Stability Analysis of Slope Surface by Heavy Rainfall (집중호우로 인한 도시 도로변 사면부 표면파괴에 대한 안정성 연구)

  • Yoon, Min-Ki;Kim, Jong-Sung;Lee, Yeong-Saeng
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1386-1394
    • /
    • 2008
  • The slope-related disasters in Korea usually occur between July and September during the typhoon and localized heavy rain. This means that the rainfall is the most important factor that leads to the slope-related disasters. The slope-related disasters can happen at very short time and lead to big damage. To forecast the change of the heave of the groundwater in slope the Seep/w program was used.

  • PDF

Development of Three Dimensional Groundwater Flow Program (3차원 지하수 흐름해석 프로그램 개발에 관한 연구)

  • 박준모;장연수;김홍석;이두화
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.577-584
    • /
    • 2001
  • For construction and design of tunnels, groundwater flow models are used to find the influence of groundwater to the stability of tunnels considering the geological condition around the tunnels and the materials used in tunnel linings. For the analysis of tunnel flow, some commercial programs, e.g. MODFLOW, SEEP/W etc., are used. These programs have limitations that MODFLOW could not define curved surface smoothly in three dimensional flow media and SEEP/W is the 2-dimensional flow model. In this paper, the ability of a finite element program developed for analyzing 3-dimensional groundwater flow is examined. Confined steady state groundwater flow solution in non-homogeneous media is obtained using isoparametric element with eight trilinear hexahedron nodes and is compared with the result of MODFLOW. It was found that the solution yielded a good result with the three dimensional flow studied.

  • PDF

Groundwater Level Estimation on a Slope by NRCS model (NRCS 침투모형에 의한 경사진 사면의 지하수위 평가)

  • Moon, Young-Il;Shin, Dong-Jun;Oh, Tae-Suk;Lee, Su-Gon
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.553-556
    • /
    • 2008
  • Slope-related disasters have been occurred in July and September due to the typhoon and concentrated precipitation. It is shown that rainfall is the most important factor which leads to slope-related disasters in Korea. In this paper, slope analysis was applied by rainfall intensity as a rain factor and was assumed that all rainfall would be infiltrated on the slope. Also, groundwater level on a slope was estimated by using SEEP/W program according to infiltration. Where, amount of Infiltration can be calculated by using NRCS model. Finally, safety factor on a slope was invested by groundwater level.

  • PDF