• Title/Summary/Keyword: SECM

Search Result 13, Processing Time 0.025 seconds

Frequency-Distance Responses in SECM-EQCM: A Novel Method for Calibration of the Tip-Sample Distance$\S$

  • 신명선;전일철
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1227-1232
    • /
    • 1998
  • The frequency response on the tip-sample distance in scanning electrochemical microscopy (SECM) that is combined with an electrochemical quartz crystal microbalance (EQCM) is described. The oscillation frequency of the EQCM increases rapidly when the SECM tip is very close to the substrate electrode surface. This frequency increase is reproducible regardless of the current feedback in SECM, which is attributed to the stress caused by the tip pressing the quartz crystal. It is useful to calibrate the tip-sample distance with respect to the frequency change when a combined system of SECM and EQCM (SECM-EQCM) is used. This method could be applied to several cases such as rigid metal electrode and non-conducting or partially conducting polymer coating prepared on the quartz crystal regardless of the feedback current.

Applications of Scanning Electrochemical Microscopy (SECM) Coupled to Atomic Force Microscopy with Sub-Micrometer Spatial Resolution to the Development and Discovery of Electrocatalysts

  • Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.316-326
    • /
    • 2016
  • Development and discovery of efficient, cost-effective, and robust electrocatalysts are imperative for practical and widespread implementation of water electrolysis and fuel cell techniques in the anticipated hydrogen economy. The electrochemical reactions involved in water electrolysis, i.e., hydrogen and oxygen evolution reactions, are complex inner-sphere reactions with slow multi-electron transfer kinetics. To develop active electrocatalysts for water electrolysis, the physicochemical properties of the electrode surfaces in electrolyte solutions should be investigated and understood in detail. When electrocatalysis is conducted using nanoparticles with large surface areas and active surface states, analytical techniques with sub-nanometer resolution are required, along with material development. Scanning electrochemical microscopy (SECM) is an electrochemical technique for studying the surface reactions and properties of various types of electrodes using a very small tip electrode. Recently, the morphological and chemical characteristics of single nanoparticles and bio-enzymes for catalytic reactions were studied with nanometer resolution by combining SECM with atomic force microscopy (AFM). Herein, SECM techniques are briefly reviewed, including the AFM-SECM technique, to facilitate further development and discovery of highly active, cost-effective, and robust electrode materials for efficient electrolysis and photolysis.

Use of Local Electrochemical Methods (SECM, EC-STM) and AFM to Differentiate Microstructural Effects (EBSD) on Very Pure Copper

  • Martinez-Lombardia, Esther;Lapeire, Linsey;Maurice, Vincent;De Graeve, Iris;Klein, Lorena;Marcus, Philippe;Verbeken, Kim;Kestens, Leo;Gonzalez-Garcia, Yaiza;Mol, Arjan;Terryn, Herman
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • When aiming for an increased and more sustainable use of metals a thorough knowledge of the corrosion phenomenon as function of the local metal microstructure is of crucial importance. In this work, we summarize the information presented in our previous publications[1-3] and present an overview of the different local (electrochemical) techniques that have been proven to be effective in studying the relation between different microstructural variables and their different electrochemical behavior. Atomic force microscopy (AFM)[1], scanning electrochemical microscopy (SECM)[2], and electrochemical scanning tunneling microscopy (EC-STM)[3] were used in combination with electron backscatter diffraction (EBSD). Consequently, correlations could be identified between the grain orientation and grain boundary characteristics, on the one hand, and the electrochemical behavior on the other hand. The grain orientation itself has an influence on the corrosion, and the orientation of the neighboring grains also seems to play a decisive role in the dissolution rate. With respect to intergranular corrosion, only coherent twin boundaries seem to be resistant.

Applications of Scanning Electrochemical Microscopy

  • Bard, Allen J.;Fan, Fu-Ren F.
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.1069-1074
    • /
    • 1995
  • The application of scanning electrochemical microscopy to the imaging of surfaces in water and air and to the study of the electrochemistry of single molecules is discussed.

  • PDF

Sheet Reisistance Analysis of TiNx Thin Film by RF Magnetron Sputtering (RF magnetron 스파터링법으로 제작한 TiNx 박막의 면저항분석)

  • Park, Moon Chan;Oh, Jeong Hong;Kim, Nam Young;Hwangbo, Chang Kwon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.1
    • /
    • pp.21-25
    • /
    • 1999
  • The TiN, thin films were prepared on glass substrate by RF(radio-frequency) magnetron sputtering apparatus from a Ti target in a gaseous mixture of argon and nitrogen. In deposition, a RF power supply was used as a power source with a constant power of 240W, and the substrate was heated to $200^{\circ}C$. The films were obtained at nitogen flow rates in the range 3-9 sccm with a constant argon flow rate of 20 secm. For the films obtained, the sheet resistance and the chemical binding energy of the films was observed by four-point-probe method and x-ray photoelectron spectroscopy(XPS) depth profiling respectively. In addition, we investigated the relationship between the surface resistance and the chemical nature of the films.

  • PDF

Respiration Rates of Individual Bovine In Vivo-Produced Embryos Measured with a Novel, Scanning Electrochemical Microscopy (Scanning Electrochemical Microscopy를 이용한 한우 체내 수정란의 호흡률 조사)

  • Kim, Hyun;Bok, Nan-Hee;Kim, Sung-Woo;Do, Yoon-Jung;Kim, Min-Kyu;Cho, Sang-Rae;Seong, Hwan-Hoo;Kim, Dong Hun;Ko, Yeoung-Gyu
    • Journal of Embryo Transfer
    • /
    • v.29 no.1
    • /
    • pp.91-99
    • /
    • 2014
  • Oxygen consumption is a useful parameter for evaluating mammalian embryo quality, since individual bovine embryos was noninvasively quantified by scanning electrochemical microscopy (SECM). Recently, several approaches have been used to measure the oxygen consumption rates of individual embryos, but relationship between oxygen consumption and pregnancy rates of Hanwoo following embryo transfer has not yet been reported. In this study, we measured to investigate the correlation between oxygen consumption rate and pregnancy rates of Hanwoo embryo using a SECM. In addition to, the expression of pluripotent gene and anti-oxidant enzyme was determined using real-time PCR by extracting RNA according to the oxygen consumption of in vivo embryo. First, we found that the oxygen consumption significantly increased in blastocyst-stage embryos (blastocyst) compared to early blastocyst stage embryos, indicating that oxygen consumption reflects the embryo quality (Grade I). Oxygen consumption of blastocyst was measured using a SECM and total cell number of in vitro blastocyst was enumerated by counting cells stained by propidium iodide. The oxygen consumption or GI blastocysts were significantly higher than those of GII blastocysts ($10.2{\times}10^{15}/mols^{-1}$ versus $6.4{\times}10^{15}/mols^{-1}$, p<0.05). Total cell numbers of in vitro blastocysts were 74.8, 90.7 and 110.2 in the oxygen consumption of below 10.0, 10.0~12.0 and over $12.0{\sim}10^{15}/mols^{-1}$, respectively. Pregnant rate in recipient cow was 0, 60 and 80% in the transplantation of embryo with the oxygen consumption of below 10.0, 10.0~12.0 and over $12.0{\times}10^{15}/mols^{-1}$, respectively. GPX1 and SOD1 were significantly increased in over -10.0 group than below 10.0 groups but in catalase gene, there was no significant difference. On the other hand, In OCT-4 and Sox2, pluripotent gene, there was a significant difference (p<0.05) between the below-10.0 ($0.98{\pm}0.1$) and over 10.0 ($1.79{\pm}0.2$). In conclusion, these results suggest that measurement of oxygen consumption maybe help increase the pregnant rate of Hanwoo embryos.

An Investigation of the Current Squeezing Effect through Measurement and Calculation of the Approach Curve in Scanning Ion Conductivity Microscopy (Scanning Ion Conductivity Microscopy의 Approach Curve에 대한 측정 및 계산을 통한 Current Squeezing 효과의 고찰)

  • Young-Seo Kim;Young-Jun Cho;Han-Kyun Shin;Hyun Park;Jung Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.54-62
    • /
    • 2024
  • SICM (Scanning Ion Conductivity Microscopy) is a technique for measuring surface topography in an environment where electrochemical reactions occur, by detecting changes in ion conductivity as a nanopipette tip approaches the sample. This study includes an investigation of the current response curve, known as the approach curve, according to the distance between the tip and the sample. First, a simulation analysis was conducted on the approach curves. Based on the simulation results, then, several measuring experiments were conducted concurrently to analyze the difference between the simulated and measured approach curves. The simulation analysis confirms that the current squeezing effect occurs as the distance between the tip and the sample approaches half the inner radius of the tip. However, through the calculations, the decrease in current density due to the simple reduction in ion channels was found to be much smaller compared to the current squeezing effect measured through actual experiments. This suggests that ion conductivity in nano-scale narrow channels does not simply follow the Nernst-Einstein relationship based on the diffusion coefficients, but also takes into account the fluidic hydrodynamic resistance at the interface created by the tip and the sample. It is expected that SICM can be combined with SECM (Scanning Electrochemical Microscopy) to overcome the limitations of SECM through consecutive measurement of the two techniques, thereby to strengthen the analysis of electrochemical surface reactivity. This could potentially provide groundbreaking help in understanding the local catalytic reactions in electroless plating and the behaviors of organic additives in electroplating for various kinds of patterns used in semiconductor damascene processes and packaging processes.

Changes in Oxygen Consumption Rates of Embryos in Korean Cattle (한우 수정란의 발달 단계별 산소 소비량 변화)

  • Choe, Chang-Yong;Cho, Sang-Rae;Son, Jun-Kyu;Choi, Sun-Ho;Cho, Chang-Yeon;Kim, Jae-Bum;Kim, Sung-Jae;Kang, Da-Won;Son, Dong-Soo
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.231-235
    • /
    • 2009
  • Oxygen consumption has been regarded as a useful indicator for assessment of mammalian embryo quality. However, there was no standard criterion to measure the oxygen consumption of embryos. Here, we measured oxygen consumption of bovine embryos at various developmental stages was measured using a scanning electrochemical microscopy (SECM). We found that the oxygen consumption significantly increased in blastocyst-stage embryos compared to other stage embryos (from 2-cell-stage to morula-stage), indicating that oxygen consumption reflects the cell number ($5.2{\sim}7.6{\times}10^{14}/mol\;s^{-1}$ versus $1.2{\sim}2.4{\times}10^{14}/mol\;s^{-1}$, p<0.05). In the morula-stage embryos, the oxygen consumption of in vivo derived embryos was significantly higher than that of in vitro produced embryos ($4.0{\times}10^{14}/mol\;s^{-1}$ versus $2.4{\times}10^{14}/mol\;s^{-1}$, p<0.05). However, there was no significant difference in consumption of oxygen by in vivo and in vitro-derived bovine blastocyst-stage embryos (p>0.05). In the frozen-thawed blastocyst-stage embryos, live embryos showed significantly higher oxygen consumption than dead embryos ($4.7{\times}10^{14}/mol\;s^{-1}$ versus $1.0{\times}10^{14}/mol\;s^{-1}$, p<0.05). These results indicate that the measuring oxygen consumption by SECM can be used to evaluate bovine embryo quality.

Mouse Embryo Culture as Quality Control for Human IVF:Culture Media and Supplements (인간 난자의 체외수정을 위한 정도관리로서 생쥐 착상전 배아의 배양에 관한 연구)

  • Lee, Gy-Soog;Park, Jong-Duk;Lee, Choon-Khoon;Kim, Jong-Duk
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.16 no.2
    • /
    • pp.161-171
    • /
    • 1989
  • The development of 2-cell mouse embryos to the blastocyst stage in vitro has been used as quality control for the culture media and supplements employed for human in vitro fertilization and embryo transfer(IVF-ET). 2-cell mouse embryos were cultured to the blastocyst stage in SECM, Medium 199-Earle's, Ham's F-10 I , Ham's F-10 II , Hoppe & Pitts, MEM and $HT_6$. The protein supplements contained in media were bovine serum albumine, fetal bovine serum and human fetal cord serum. The results were as follows; 1. The successful development was 81.3% in Medium 199-Earle’s, 91.9% in Ham’s F-10 I and 97.1% in $HT_6$. 2. 2-cell mouse embryos developed properly in all supplements but the best development was particularly noted in $HT_6$ media when HFCS was supplied as protein supplement.

  • PDF

An assessment of the Systems Engineering Capability Maturity of the Railway Safety Project applied the Systems Engineering (시스템엔지니어링을 적용한 철도안전프로젝트의 시스템엔지니어링 능력성숙도 평가)

  • Choi, Yo Chul;Lee, Jae Chon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • In this paper, there is the case study which assesses the systems engineering capability maturity of the safety organization that performs the Railway Safety project using systems engineering method. To In ore effective and efficient a research and development to railway safety domain, a new research and development method can be progressively needed such as systems engineering. To assess quantitatively research of systems engineering efforts in the railway safety project, SECM(EIA/IS 731) Standard is utilized in the paper. It is by questionnaire that the capability maturity assessment is executed wit h the safety organization and staffs who performs the systems engineering activities; requirement analysis and management, interface control management. product verification and validation, and so on. As a result, the systems engineering capability level of the safety organization rises from 0 level at the initial project to 2 level after two years and all staffs give an affirmative answer about the importance and effectiveness of the systems engineering approach.

  • PDF