• Title/Summary/Keyword: SEAT 계수

Search Result 25, Processing Time 0.026 seconds

Development of a Seat Vibration Evaluation Program for Earth Moving Machinery (육상중장비용 시트의 진동평가 프로그램 개발)

  • Lee, Gun-Myung;Park, O-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.210-214
    • /
    • 2007
  • A simulation program has been developed to evaluate operator seat vibration for earth-moving machinery and decide whether a seat meets the requirements imposed by ISO 7096. An operator seat is assumed as a linear system composed of a mass, a spring, and a damper mounted on a platform. The program evaluates the transmissibility at resonance, and the SEAT factors for a light person and a heavy person. The developed program can be utilized effectively in designing a new operator seat.

  • PDF

Measurement of the distributed dynamic stiffness of seats and analysis of dynamic properties of seats (시트 동적 강성 분포 측정 방법 및 시트 별 특성 분석)

  • Kim, Deokman;Min, Kyongwon;Park, Hyunkyu;Park, Junhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.994-995
    • /
    • 2014
  • Supporting stiffness of seats is an important component affecting dynamic characteristics cognized by a passenger. To analyze dynamic characteristic of a seat for vehicles operating on various road conditions, the seat vibration from road irregularity should be understood and compared. In this study, the seat is analyzed as distributed supporting system. The dynamic stiffness is measured using masses. The characteristic of the seats is analyzed by measuring distributed dynamic stiffness. The distributed dynamic stiffness of the seat is estimated on various locations and the effects of each component such as spatial distribution, compression level and vibration amplitude are analyzed. The influence of seat cover, elastic support and flexible polyurethane foam on the measured stiffness was analyzed.

  • PDF

CHARACTERISTIC OF BUTTERFLY VALVE FLOW WITH DIFFERENT DESIGN FACTORS (설계인자 변경에 따른 버터플라이 밸브 유동 특성에 관한 연구)

  • Lee, J.W.;Choi, H.K.;Yoo, G.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.170-176
    • /
    • 2009
  • Flow control butterfly valve(FCBV) is known to have difficulty in controlling flow rate along valve opening due to its high flow rate. In low opening condition, the butterfly valve also has some shortcomings such as noise, vibration and erosion which are mostly caused by cavitation effects. Therefore, the FCBV requires proper remedies to reduce cavitation effects and to improve flow control performance. Numerical analysis is applied to FCBV flow to find effects of design factors such as seat diameter and valve opening rate. Cases with 3 different sizes of seat diameter and various valve opening rate are selected for the numerical analysis. From the analysis results, it is found that the FCBV with small seat diameter shows better pressure loss performance and reduced cavitation effects.

  • PDF

CHARACTERISTIC OF BUTTERFLY VALVE FLOW WITH DIFFERENT DESIGN FACTORS (설계인자 변경에 따른 버터플라이 밸브 유동 특성에 관한 연구)

  • Lee, J.W.;Choi, H.K.;Yoo, G.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • Flow control butterfly valve(FCBV) is known to have difficulty in controlling flow rate along valve opening due to its high flow rate. In low opening condition, the butterfly valve also has some shortcomings such as noise, vibration and erosion which are mostly caused by cavitation effects. Therefore, the FCBV requires proper remedies to reduce cavitation effects and to improve flow control performance. Numerical analysis is applied to FCBV flow to find effects of design factors such as seat diameter and valve opening rate. Cases with 3 different sizes of seat diameter and various valve opening rate are selected for the numerical analysis. From the analysis results, it is found that the FCBV with small seat diameter shows better pressure loss performance and reduced cavitation effects.

Initial Design of A Suspension Damper for Truck Driver's Seat (트럭 운전석 현가 댐퍼의 초기설계)

  • Baek, W.K.;Oh, S.W.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.91-96
    • /
    • 1999
  • This study is about the design and analysis ot a suspension damper for truck driver's seat to improve the ride comfort. Trucks are usually subjected to hostile driving environments. Therefore, many truck driver's seat have suspension seats to isolate the vibration from the cab floor panel. Because the vehicle suspension system can reduce the primary vibration from the ground, only low frequency vibration can be transmitted to the driver's seat. But, this low frequency vibration can be harmful to the driver. The seat damper is very critical element to improve the ride comfort for the driver. In this study, a four-stage damper is designed and analyzed for the vibration capability. The damping coefficient of this damper can lie manually controlled in response to the road and driving environment.

  • PDF

Comparison and Analysis for Evaluation of Ride and SEAT Index through Theoretical Seat-Human Body Model and Vehicle Test (시트-인체 해석 모델링과 차량 주행 시험을 통한 차량 승차감 평가와 시트 지수의 비교 및 분석)

  • Son, In-Suk;Kim, Jung-Hoon;Kang, Yeon-June
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2009
  • A simplified model of seat-human body is presented to analyze vibrations of human body on a seat of vehicle. The theoretical model having seven degrees-of-freedom is composed of the inter-connected masses, springs and dampers. Until now, evaluation of ride comfort has been usually performed only through vehicle tests. This study aims to complement shortcomings of conventional vehicle tests in evaluation of ride comfort by using the theoretical model. The acceleration values of the human body are obtained from frequency response functions of the theoretical model. Thereafter, Ride and SEAT indexes are acquired by considering response characteristics of the human body for the 12 axes that are presented in BS 6841. A vehicle test is carried out to measure the acceleration values for the three parts of the human body such as upper body, hip and foot. Ride and SEAT indexes of the vehicle test are also obtained by considering the response characteristics of the human body, of which results are compared with the values from the theoretical model. It is found that the theoretical results are in good agreement with the experimental results.

The Friction and Wear Characteristics of the Seat Recliner Parts Based on Lubricant Characteristics (윤활제 특성에 따른 시트 리클라이너 부품의 마찰 및 마모 특성)

  • Hong, Seok-June;Lee, Kwang-Hee;Lim, Hyun-Woo;Kim, Jae-Woong;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.183-189
    • /
    • 2019
  • The driver seat of an automobile is in direct contact with the driver and provides the driver with a safe and comfortable ride. The seat consists of a frame, a rail, and many recliners. In recent years, strength and operating force measurement testing of the recliner have become vital for designing car seats. However, performance evaluation requires expensive testing equipment, numerous seat products, and considerable time. Therefore, the trend is to reduce experimentation through interpretation. This study examines the lubrication of solid lubricant for automotive seat recliners and confirms the friction and wear performance. In this study, the lubrication behavior of solid lubricants for car seat recliners is investigated to ascertain the friction and wear performance and to provide accurate values for the strength analysis. The friction material consists of a pin and a plate made from steel, which is widely used in recliners. The friction and wear under lubrication conditions are measured by a reciprocating friction wear tester. The friction coefficient is obtained according to the load and speed. Based on the obtained results, it is possible to achieve a reduction in the error of the test value and the analysis by providing the friction coefficient and wear of the lubricant. The results can be applied to the analysis of automobile seat design.

Spot Weld Fatigue Life Prediction of Auto Set Belt Anchors Using $K_e$ (K_e에 의한 차량 안전벨트 앵커의 점용접 피로수명 예측)

  • Kim, Nam-Ho;Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.701-709
    • /
    • 2000
  • As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. Recasting the load vs. fatigue life relationships experimentally obtained, we predicted the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot. We therefore attempt to evaluate the effectiveness and validity of $K_e$ in predicting the fatigue life of auto seat belt anchor panel. We first establish finite element models reflecting the actual mechanical behavior of 3 types of seat belt anchor specimens. Using finite element models elaborately established, we then obtain the effective crack driving parameter $K_e$ composed of its ductility -dependent modal components. It is confirmed that the $K_e$ concept successfully predicts the fatigue life of multi-spot welded panel structures represented by auto seat belt anchors here.

An analysis of behavioral characteristics in drivers in roll-over accident (전복사고 운전자를 대상으로 자동차 안전장치에 대한 행동특성 분석)

  • Lee, Hyo-Ju;Kim, Ho-Jung;Lee, Kang-Hyun;Lee, Myung-Lyeol;Choi, Hyo-Jueng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7329-7334
    • /
    • 2015
  • This is to analyze of driver behavioral and the accident characteristics in rollover. The study period was January 2011 to May 2014 and the subject of study was 102 person who were drivers visited the emergency room. Research tool includes a damage information of the vehicle, accident mechanism, damage to the patient clinical information with the injury data from the ROAD Traffic Authority. For data analysis, SPSS 18.0 was used for t-test, ANOVA and Chi-square test. Injury Severity Score average score according to the vehicle type is 6.00 points in the smaller vehicle, at high vehicle 11.78 points, from the other vehicle that showed 14.70 points. Significant differences between the three groups did not show (P=.267). Men did not use a seat belt significantly compared to women(P=.007). Vehicle type and weather, this was no correlation with whether or not use the seat belt(P=.755, P=.793). But showed a tendency to smaller size vehicles drivers do not use a seat belt, the weather could see a little more inclined to use a seat belt rather than a sunny day. Finally, in rollover accidents as in other types of accident it was confirmed that the seat belt has a great influence on the damage.

A Study on Flow Coefficient and Flow Characteristics for Butterfly Valve by Numerical Analysis (수치해석에 의한 버터플라이 밸브의 유량계수 및 유동특성에 관한 연구)

  • Kwak, Kyung-Min;Cho, Ji-Sung;Kim, Jin-Dae;Lee, Jung-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.62-66
    • /
    • 2012
  • The objective of this study is to simulate flow coefficient and flow characteristics such as velocity and pressure distribution for butterfly valve. Butterfly valves used in this study are 65A, 80A and 100A, in size, and of which the opening angle is varied. The flow coefficient, Kv, increases as the disc opening and valve size are increase. When using flow coefficient meanwhile specific curve of flow rate is also determined. The flow velocity between disc and seat increase as the disc opening decrease. The re-circulating zone is also observed in downstream behind disc.