• 제목/요약/키워드: SEAT 계수

검색결과 25건 처리시간 0.032초

육상중장비용 시트의 진동평가 프로그램 개발 (Development of a Seat Vibration Evaluation Program for Earth Moving Machinery)

  • 이건명;박오철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.210-214
    • /
    • 2007
  • A simulation program has been developed to evaluate operator seat vibration for earth-moving machinery and decide whether a seat meets the requirements imposed by ISO 7096. An operator seat is assumed as a linear system composed of a mass, a spring, and a damper mounted on a platform. The program evaluates the transmissibility at resonance, and the SEAT factors for a light person and a heavy person. The developed program can be utilized effectively in designing a new operator seat.

  • PDF

시트 동적 강성 분포 측정 방법 및 시트 별 특성 분석 (Measurement of the distributed dynamic stiffness of seats and analysis of dynamic properties of seats)

  • 김덕만;민경원;박현규;박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.994-995
    • /
    • 2014
  • Supporting stiffness of seats is an important component affecting dynamic characteristics cognized by a passenger. To analyze dynamic characteristic of a seat for vehicles operating on various road conditions, the seat vibration from road irregularity should be understood and compared. In this study, the seat is analyzed as distributed supporting system. The dynamic stiffness is measured using masses. The characteristic of the seats is analyzed by measuring distributed dynamic stiffness. The distributed dynamic stiffness of the seat is estimated on various locations and the effects of each component such as spatial distribution, compression level and vibration amplitude are analyzed. The influence of seat cover, elastic support and flexible polyurethane foam on the measured stiffness was analyzed.

  • PDF

설계인자 변경에 따른 버터플라이 밸브 유동 특성에 관한 연구 (CHARACTERISTIC OF BUTTERFLY VALVE FLOW WITH DIFFERENT DESIGN FACTORS)

  • 이종욱;최훈기;유근종
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.170-176
    • /
    • 2009
  • Flow control butterfly valve(FCBV) is known to have difficulty in controlling flow rate along valve opening due to its high flow rate. In low opening condition, the butterfly valve also has some shortcomings such as noise, vibration and erosion which are mostly caused by cavitation effects. Therefore, the FCBV requires proper remedies to reduce cavitation effects and to improve flow control performance. Numerical analysis is applied to FCBV flow to find effects of design factors such as seat diameter and valve opening rate. Cases with 3 different sizes of seat diameter and various valve opening rate are selected for the numerical analysis. From the analysis results, it is found that the FCBV with small seat diameter shows better pressure loss performance and reduced cavitation effects.

  • PDF

설계인자 변경에 따른 버터플라이 밸브 유동 특성에 관한 연구 (CHARACTERISTIC OF BUTTERFLY VALVE FLOW WITH DIFFERENT DESIGN FACTORS)

  • 이종욱;최훈기;유근종
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.64-70
    • /
    • 2010
  • Flow control butterfly valve(FCBV) is known to have difficulty in controlling flow rate along valve opening due to its high flow rate. In low opening condition, the butterfly valve also has some shortcomings such as noise, vibration and erosion which are mostly caused by cavitation effects. Therefore, the FCBV requires proper remedies to reduce cavitation effects and to improve flow control performance. Numerical analysis is applied to FCBV flow to find effects of design factors such as seat diameter and valve opening rate. Cases with 3 different sizes of seat diameter and various valve opening rate are selected for the numerical analysis. From the analysis results, it is found that the FCBV with small seat diameter shows better pressure loss performance and reduced cavitation effects.

트럭 운전석 현가 댐퍼의 초기설계 (Initial Design of A Suspension Damper for Truck Driver's Seat)

  • 백운경;오세운
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.91-96
    • /
    • 1999
  • This study is about the design and analysis ot a suspension damper for truck driver's seat to improve the ride comfort. Trucks are usually subjected to hostile driving environments. Therefore, many truck driver's seat have suspension seats to isolate the vibration from the cab floor panel. Because the vehicle suspension system can reduce the primary vibration from the ground, only low frequency vibration can be transmitted to the driver's seat. But, this low frequency vibration can be harmful to the driver. The seat damper is very critical element to improve the ride comfort for the driver. In this study, a four-stage damper is designed and analyzed for the vibration capability. The damping coefficient of this damper can lie manually controlled in response to the road and driving environment.

  • PDF

시트-인체 해석 모델링과 차량 주행 시험을 통한 차량 승차감 평가와 시트 지수의 비교 및 분석 (Comparison and Analysis for Evaluation of Ride and SEAT Index through Theoretical Seat-Human Body Model and Vehicle Test)

  • 손인석;김정훈;강연준
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.1-9
    • /
    • 2009
  • A simplified model of seat-human body is presented to analyze vibrations of human body on a seat of vehicle. The theoretical model having seven degrees-of-freedom is composed of the inter-connected masses, springs and dampers. Until now, evaluation of ride comfort has been usually performed only through vehicle tests. This study aims to complement shortcomings of conventional vehicle tests in evaluation of ride comfort by using the theoretical model. The acceleration values of the human body are obtained from frequency response functions of the theoretical model. Thereafter, Ride and SEAT indexes are acquired by considering response characteristics of the human body for the 12 axes that are presented in BS 6841. A vehicle test is carried out to measure the acceleration values for the three parts of the human body such as upper body, hip and foot. Ride and SEAT indexes of the vehicle test are also obtained by considering the response characteristics of the human body, of which results are compared with the values from the theoretical model. It is found that the theoretical results are in good agreement with the experimental results.

윤활제 특성에 따른 시트 리클라이너 부품의 마찰 및 마모 특성 (The Friction and Wear Characteristics of the Seat Recliner Parts Based on Lubricant Characteristics)

  • 홍석준;이광희;임현우;김재웅;이철희
    • Tribology and Lubricants
    • /
    • 제35권3호
    • /
    • pp.183-189
    • /
    • 2019
  • The driver seat of an automobile is in direct contact with the driver and provides the driver with a safe and comfortable ride. The seat consists of a frame, a rail, and many recliners. In recent years, strength and operating force measurement testing of the recliner have become vital for designing car seats. However, performance evaluation requires expensive testing equipment, numerous seat products, and considerable time. Therefore, the trend is to reduce experimentation through interpretation. This study examines the lubrication of solid lubricant for automotive seat recliners and confirms the friction and wear performance. In this study, the lubrication behavior of solid lubricants for car seat recliners is investigated to ascertain the friction and wear performance and to provide accurate values for the strength analysis. The friction material consists of a pin and a plate made from steel, which is widely used in recliners. The friction and wear under lubrication conditions are measured by a reciprocating friction wear tester. The friction coefficient is obtained according to the load and speed. Based on the obtained results, it is possible to achieve a reduction in the error of the test value and the analysis by providing the friction coefficient and wear of the lubricant. The results can be applied to the analysis of automobile seat design.

K_e에 의한 차량 안전벨트 앵커의 점용접 피로수명 예측 (Spot Weld Fatigue Life Prediction of Auto Set Belt Anchors Using $K_e$)

  • 김남호;이형일
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.701-709
    • /
    • 2000
  • As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. Recasting the load vs. fatigue life relationships experimentally obtained, we predicted the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot. We therefore attempt to evaluate the effectiveness and validity of $K_e$ in predicting the fatigue life of auto seat belt anchor panel. We first establish finite element models reflecting the actual mechanical behavior of 3 types of seat belt anchor specimens. Using finite element models elaborately established, we then obtain the effective crack driving parameter $K_e$ composed of its ductility -dependent modal components. It is confirmed that the $K_e$ concept successfully predicts the fatigue life of multi-spot welded panel structures represented by auto seat belt anchors here.

전복사고 운전자를 대상으로 자동차 안전장치에 대한 행동특성 분석 (An analysis of behavioral characteristics in drivers in roll-over accident)

  • 이효주;김호중;이강현;이명렬;최효정
    • 한국산학기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.7329-7334
    • /
    • 2015
  • 본 연구는 전복에서 사고의 특성과 운전자의 행동특성을 분석하기 위한 연구이다. 연구기간은 2011년 1월에서 2014년 5월까지이며 연구대상은 전복사고로 응급의료센터에 내원한 운전자 102명이었다. 연구도구는 교통안전공단 인체상해 데이터를 이용하였으며 여기에는 자동차의 손상정도와 환자의 데이터를 수집하여 정리된 내용으로 차량의 기본정보와 환자정보, 손상의 역학적 원인과 사진 상의 손상정보, 환자의 임상적 손상정보를 모두 포함하고 있다. 자료분석은 SPSS 18.0을 이용하여 기술통계, ANOVA, Chi-square test 분석을 시행하였다. 분석 결과 차량종류에 따른 손상정도계수(Injury Severity Score) 평균 점수는 작은 차량에서 6.00점, 높은 차량에서 11.78점, 그 외 차량에서 14.70점을 보였고 세 집단 간 유의한 차이는 보이지 않았다(P=.267). 안전벨트 착용 여부에서 남자가 여자에 비해 안전벨트를 유의하게 착용하지 않는 것을 볼 수 있었으며 (P=.007), 차량 종류나 날씨 등이 안전벨트 착용 여부와 상관관계를 보이지는 않았다(P=.755, P=.793). 하지만 차량의 크기가 작을수록 운전자들이 안전벨트를 차용하지 않는 경향을 보였고, 날씨가 맑은 날 오히려 안전벨트를 좀 더 착용하는 경향을 볼 수 있었다. 마지막으로 전복 사고에서도 다른 사고 유형에서와 마찬가지로 안전벨트 착용 여부가 손상에 큰 영향을 미치는 것을 확인할 수 있었다.

수치해석에 의한 버터플라이 밸브의 유량계수 및 유동특성에 관한 연구 (A Study on Flow Coefficient and Flow Characteristics for Butterfly Valve by Numerical Analysis)

  • 곽경민;조지승;김진대;이중형
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.62-66
    • /
    • 2012
  • The objective of this study is to simulate flow coefficient and flow characteristics such as velocity and pressure distribution for butterfly valve. Butterfly valves used in this study are 65A, 80A and 100A, in size, and of which the opening angle is varied. The flow coefficient, Kv, increases as the disc opening and valve size are increase. When using flow coefficient meanwhile specific curve of flow rate is also determined. The flow velocity between disc and seat increase as the disc opening decrease. The re-circulating zone is also observed in downstream behind disc.