• Title/Summary/Keyword: SEAL

Search Result 1,176, Processing Time 0.03 seconds

Inter Propellant Seal Performance test for 75 ton Class Turbopump (75톤급 터보펌프 추진제 혼합 방지 실의 성능 시험)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Park, Min-Joo;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.47-53
    • /
    • 2010
  • A performance test of a 75 ton class turbopump inter propellant seal is conducted using water to evaluate leakage and endurance performance. Each fuel pump side part and oxidizer pump side part of a prototype inter propellant seal has been tested for verifying endurance performance during total accumulated test time 2,100 sec in water. The fuel pump side part with 1 stage carbon floating ring seal shows average leakage rate 13.7 gram/sec under average seal differential pressure 9.4 bar. On the other hand, the LOx pump side part with 2 stage carbon floating ring seal shows average leakage rate 7.3 gram/sec under average seal differential pressure 9.5 bar. After the endurance performance test, the inter propellant seal shows good physical condition. A cryogenic leakage performance test of the inter propellant seal will be performed using LN2 in the near future.

  • PDF

Development of rapidly hardening seal material applicable to steel pipe multistage grouting (강관다단 그라우팅에 적용하는 속경성 실링재 개발)

  • Shin, Hyunkang;Jung, Hyuksang;Kim, Donghyun;Ryu, Yongsun;Kim, Donghoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.301-321
    • /
    • 2019
  • The development of a rapidly hardening seal material applicable to steel pipe multistage grouting is described in this paper. In the multistage technique, seal materials are inserted to prevent the backflow of main grouting material. The grouting material must be inserted only after sufficient time has passed for the seal material to reach a gel state. Otherwise, the fluid seal material mixes with the main grouting material and a backflow of the grouting material occurs, thereby making its in situ insertion difficult. Furthermore, if the seal material remains in the gel state for too long a time, it solidifies; and the main grouting material will not be able to seep into the soil. The gel time, i.e., the time needed for the fluid seal material to turn into a gel state, determines the construction period of steel pipe multistage grouting. The gel time is one of the important factors in this technique, because it impacts the total tunnel construction period significantly. This study develops a rapidly hardening calcium aluminate material, which can reduce the gel time and shorten the construction period while retaining proper sealing function. It also presents a method to determine whether the seal material has reached the gel state as well as the quality standard and bleeding rate testing method for the seal material in the gel state.

Analysis of a Lip Seal Behavior for Rotary Union (로터리 유니온용 립 시일의 거동 해석)

  • Park, Tae-Jo;Yoo, Jae-Chan
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.272-277
    • /
    • 2007
  • Various type of rotary unions are widely used to provide fluids between rotating parts. To prevent fluid leakage, most of the rotary unions adopt mechanical seals which is highly reliable but too expensive and complicate. In this paper, a simple lip seal system made of PTFE is adopted in designing of a compact rotary union. Using MARC, the behavior characteristics of lip seal are investigated for seal mounting process, and obtained variations of contact pressure distribution and contact width with interferences and fluid pressures. The results showed that contact width are increased with interference and pressure. The maximum contact pressure are also increased up to a certain interference and pressure, however, then decreased. The numerical methods and results can be applied in designing and performance improvement of lip seal adopted rotary union, and further extensive studies are required.

Sliding Contact Analysis between Rubber Seal, a Spherical Particle and Steel Surface (시일과 스틸면 사이에 구형 입자가 있는 미끄럼 접촉 해석)

  • Park, Tae-Jo;Lee, Jun-Hyuk
    • Tribology and Lubricants
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, a three elastic body sliding contact problem is modeled to investigate more precise wear mechanisms related with the sealing surface. A 3-D finite element contact model, a small spherical elastic particle, PTFE seal and steel surface, is solved using a nonlinear finite element code MARC. The deformed seal and steel surface shapes, von-Mises and principal stress distributions are obtained for different seal sliding distances. The entrapped small particle within PTFE seal results in very high stresses on the steel surface which exceeded its yield strength and produce plastic deformation such as groove and torus. The sealing surface could also be worn down by sub-surface fatigue due to intervening small particles together with the well-known abrasive wear. Therefore the proposed contact model adopted in this paper can be applied in design of various sealing systems, and further studies are required.

Leakage Analysis of Angled-Labyrinth-Packing-Ring Seal for Steam Turbine Using CFD (CFD를 사용한 스팀터빈용 각이 진 패킹 링 실의 누설량 예측)

  • Ha, Tae-Woong;Kang, Jung-Hyun
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.298-304
    • /
    • 2009
  • An angled labyrinth seal is used for the diaphragm-packing-ring seal design of steam turbine due to its leakage reduction characteristic. CFD analysis using FLUENT has been performed to predict leakage and determine an optimum slanted angle which yields the best leakage reduction. Results show that the optimum value of slanted angle is $-30^{\circ}$ independent of number of labyrinth teeth, inlet pressure, and tooth height to pitch ratio. 3D CFD analysis has been performed for predicting leakage of the angled labyrinth seal. Comparing with the result of 2D CFD analysis, 3D CFD analysis shows 1.4% smaller.

Dynamic Stability and Leakage Characteristics of Turbo Pump Unit Installed with High-Pressure Seals (고압 실이 장착되어 있는 터보 펌프의 동적 안정성 및 누설 특성에 관한 연구)

  • 이용복;곽현덕;김창호;하태웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.322-330
    • /
    • 2001
  • The stability and the leakage performance of turbo pump unit seals supported by elastic-ring ball bearings are Investigated for the Improvement of onset speed of instability(OSI). The numerical analysis of floating ring seal in consistence with its geometry and operating conditions is executed with detailed comparison of various seal types. The results show that the floating ring seal has superior performance in terms of rotordynamic salability compared to the ocher type seals while it shows slightly inferior leakage performance. To Improve the leakage performance. floating ring seal could be combined with hole Pattern damper or labyrinth seal surface.

  • PDF

Hydrodynamic forces of impeller shroud and wear-ring seal on centrifugal pump (고성능 원심펌프에서 임펠러 시라우드 및 마모 시일의 유체가진력 해석)

  • Ha, Tae-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.102-110
    • /
    • 1998
  • The analysis of lateral hydrodynamic forces in the leakage path between a shrouded pump impeller through wear-ring seal and its housing is presented. Governing equations are derived based on Bulk-flow and Hirs' turbulent lubrication model. By using a perturbation analysis and a numerical integration method, governing equations are solved to yield leakage and rotordynamic coefficients of force developed by the impeller shroud and wear-ring seal. The variation of rotordynamic coefficients of pump impeller shroud and wear-ring seal is analyzed as parameters of rotor speed, pressure difference, shroud clearance, wear-ring seal clearance, and circumferential velocity at the entrance of impeller shroud for a typical multi-stage centrifugal pump.

Analysis of Pre-Swirl Effect for Plain-Gas Seal Using CFD (CFD를 사용한 비접촉식 가스 실의 입구 선회류 영향 해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.26-31
    • /
    • 2013
  • In present 3D CFD study, the method for determining leakage and rotordynamic coefficients of a plain-gas seal is suggested by using the relative coordinate system for steady-state simulation. In order to find the effect of pre-swirl speed at seal inlet, pre-swirl velocity is included as a parameter. Present analysis is verified by comparison with results acquired from Bulk-flow analysis code and published experimental results. The results of 3D CFD rotordynamic coefficients of direct stiffness(K) and cross-coupled stiffness(k) show improvements in prediction. As pre-swirl speed at seal inlet increases, k also increases to destabilize system. However, pre-swirl speed at seal inlet does not show sensitivity to the leakage and rotordynamic coefficients of K and damping(C).

A Study on the behavior of contact stress at the lip seal of marine pump (박용 펌프 축용 립시일의 접촉응력 거동에 관한 연구)

  • Kim, Sung-Yun;Kim, Dae-Young;Ahn, Joong-Yeal
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.114-117
    • /
    • 2004
  • The purpose of this study is to investigate geometric effect on the contact stress at a lip seal. The geometries of interest were angle, thickness of lip seal and width of contact surface. The contact stress was calculated by using a coupled thermo-mechanical analysis method. The friction thermal load between lip seal and sleeve was adopted to design load. Based on the FEA results, design variables for controlling the maximum contact stress at the lip seal were identified.

  • PDF

Prediction of the Reaction Force for Seal Lip Design with Wheel Bearing Unit (휠 베어링용 밀봉 시일 설계를 위한 시일 립의 밀착력 예측)

  • 김기훈;유영면;임종순;이상훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.165-172
    • /
    • 2001
  • Wheel bearing units were almost exclusively used for car front wheel, where the two ball rows are directly side by side with integrated rubber seal. The seal is of important for wheel bearing units due to the adverse environmental conditions with mud and splash water. The seal of wheel bearing units was designed to have geometry with multi lips, which elastic lip contacts and deforms with bearing. The equation of reaction force for deformed lip as cantilever beam was previously used for seal lip design. But it's result was not useful because deflection of the beam differs from lip's. In this study, deformed shape of the lip was assumed to and order function which is more similar to lip deformation and made the equation for reaction force prediction. The Reaction forces from each other equations were compared with results by FEA to prove usefulness of new equation.

  • PDF