• Title/Summary/Keyword: SDN(:Software Defined Networking)

Search Result 143, Processing Time 0.029 seconds

Policy-based In-Network Security Management using P4 Network DataPlane Programmability (P4 프로그래머블 네트워크를 통한 정책 기반 인-네트워크 보안 관리 방법)

  • Cho, Buseung
    • Convergence Security Journal
    • /
    • v.20 no.5
    • /
    • pp.3-10
    • /
    • 2020
  • Recently, the Internet and networks are regarded as essential infrastructures that constitute society, and security threats have been constantly increased. However, the network switch that actually transmits packets in the network can cope with security threats only through firewall or network access control based on fixed rules, so the effective defense for the security threats is extremely limited in the network itself and not actively responding as well. In this paper, we propose an in-network security framework using the high-level data plane programming language, P4 (Programming Protocol-independent Packet Processor), to deal with DDoS attacks and IP spoofing attacks at the network level by monitoring all flows in the network in real time and processing specific security attack packets at the P4 switch. In addition, by allowing the P4 switch to apply the network user's or administrator's policy through the SDN (Software-Defined Network) controller, various security requirements in the network application environment can be reflected.

Efficient Load Balancing Technique Considering Data Generation Form and Server Response Time in SDN (SDN 환경에서의 데이터 생성 형태와 서버 응답시간을 고려한 효율적인 부하분산 기법)

  • Kim, Jong-Geon;Kwon, Tae-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.679-686
    • /
    • 2020
  • With global data totals expected to grow to 175 ZB by 2025, data processing capabilities in the network area are becoming more important. In particular, data centers are becoming more stubborn as data usage increases, and the load generated by incoming data should be appropriately distributed to reduce costs and efficiently operate. The SDN technology, which emerged to overcome the limitations of the existing network system, removes rigidity of the Legacy system by separating H/W and S/W from the network equipment, and can be effectively applied to load balancing in the data center using S/W-based flexibility. In this paper, we propose ways to increase efficiency by classifying data received from users by type by utilizing SDN technology, and transmitting and processing classified data in order of response speed of servers in the data center.

FRChain: A Blockchain-based Flow-Rules-oriented Data Forwarding Security Scheme in SDN

  • Lian, Weichen;Li, Zhaobin;Guo, Chao;Wei, Zhanzhen;Peng, Xingyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.264-284
    • /
    • 2021
  • As the next-generation network architecture, software-defined networking (SDN) has great potential. But how to forward data packets safely is a big challenge today. In SDN, packets are transferred according to flow rules which are made and delivered by the controller. Once flow rules are modified, the packets might be redirected or dropped. According to related research, we believe that the key to forward data flows safely is keeping the consistency of flow rules. However, existing solutions place little emphasis on the safety of flow rules. After summarizing the shortcomings of the existing solutions, we propose FRChain to ensure the security of SDN data forwarding. FRChain is a novel scheme that uses blockchain to secure flow rules in SDN and to detect compromised nodes in the network when the proportion of malicious nodes is less than one-third. The scheme places the flow strategies into blockchain in form of transactions. Once an unmatched flow rule is detected, the system will issue the problem by initiating a vote and possible attacks will be deduced based on the results. To simulate the scheme, we utilize BigchainDB, which has good performance in data processing, to handle transactions. The experimental results show that the scheme is feasible, and the additional overhead for network performance and system performance is less than similar solutions. Overall, FRChain can detect suspicious behaviors and deduce malicious nodes to keep the consistency of flow rules in SDN.

Large Flows Detection, Marking, and Mitigation based on sFlow Standard in SDN

  • Afaq, Muhammad;Rehman, Shafqat;Song, Wang-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.189-198
    • /
    • 2015
  • Despite the fact that traffic engineering techniques have been comprehensively utilized in the past to enhance the performance of communication networks, the distinctive characteristics of Software Defined Networking (SDN) demand new traffic engineering techniques for better traffic control and management. Considering the behavior of traffic, large flows normally carry out transfers of large blocks of data and are naturally packet latency insensitive. However, small flows are often latency-sensitive. Without intelligent traffic engineering, these small flows may be blocked in the same queue behind megabytes of file transfer traffic. So it is very important to identify large flows for different applications. In the scope of this paper, we present an approach to detect large flows in real-time without even a short delay. After the detection of large flows, the next problem is how to control these large flows effectively and prevent network jam. In order to address this issue, we propose an approach in which when the controller is enabled, the large flow is mitigated the moment it hits the predefined threshold value in the control application. This real-time detection, marking, and controlling of large flows will assure an optimize usage of an overall network.

A Novel SDN-based System for Provisioning of Smart Hybrid Media Services

  • Jeon, Myunghoon;Lee, Byoung-dai
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.33-41
    • /
    • 2018
  • In recent years, technology is rapidly changing to support new service consumption and distribution models in multimedia service systems and hybrid delivery of media services is a key factor for enabling next generation multimedia services. This phenomenon can lead to rapidly increasing network traffic and ultimately has a direct and aggravating effect on the user's quality of service (QOS). To address the issue, we propose a novel system architecture to provide smart hybrid media services efficiently. The architecture is designed to apply the software-defined networking (SDN) method, detect changes in traffic, and combine the data, including user data, service features, and computation node status, to provide a service schedule that is suitable for the current state. To this end, the proposed architecture is based on 2-level scheduling, where Level-1 scheduling is responsible for the best network path and a computation node for processing the user request, whereas Level-2 scheduling deals with individual service requests that arrived at the computation node. This paper describes the overall concept of the architecture, as well as the functions of each component. In addition, this paper describes potential scenarios that demonstrate how this architecture could provide services more efficiently than current media-service architectures.

A Management for IMS Network Using SDN and SNMP (SDN과 SNMP를 이용한 IMS 네트워크 관리)

  • Yang, Woo-Seok;Kim, Jung-Ho;Lee, Jae-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.694-699
    • /
    • 2017
  • In accordance with the development of information and communications technology, a network user has to be able to use quality of service (QoS)-based multimedia services easily. Thus, information and communications operators began to focus on a technique for providing multimedia services. The IP Multimedia Subsystem (IMS) is a platform based on Internet Protocol (IP) as a technology for providing multimedia services and application services. The emerging 5G networks are described as having massive capacity and connectivity, adaptability, seamless heterogeneity, and great flexibility. The explosive growth in network services and devices for 5G will cause excessive traffic loads. In this paper, software-defined networking (SDN) is applied as a kind of virtualization technology for the network in order to minimize the traffic load, and Simple Network Management Protocol (SNMP) is used to provide more efficient network management. To accomplish these purposes, we suggest the design of a dynamic routing algorithm to be utilized in the IMS network using SDN and an SNMP private management information base (MIB). The proposal in this paper gives information and communications operators the ability to supply more efficient network resources.

LTRE: Lightweight Traffic Redundancy Elimination in Software-Defined Wireless Mesh Networks (소프트웨어 정의 무선 메쉬 네트워크에서의 경량화된 중복 제거 기법)

  • Park, Gwangwoo;Kim, Wontae;Kim, Joonwoo;Pack, Sangheon
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.976-985
    • /
    • 2017
  • Wireless mesh network (WMN) is a promising technology for building a cost-effective and easily-deployed wireless networking infrastructure. To efficiently utilize limited radio resources in WMNs, packet transmissions (particularly, redundant packet transmissions) should be carefully managed. We therefore propose a lightweight traffic redundancy elimination (LTRE) scheme to reduce redundant packet transmissions in software-defined wireless mesh networks (SD-WMNs). In LTRE, the controller determines the optimal path of each packet to maximize the amount of traffic reduction. In addition, LTRE employs three novel techniques: 1) machine learning (ML)-based information request, 2) ID-based source routing, and 3) popularity-aware cache update. Simulation results show that LTRE can significantly reduce the traffic overhead by 18.34% to 48.89%.

Management, Orchestration and Security in Network Function Virtualization (네트워크 기능 가상화 관리 및 오케스트레이션 기능과 보안)

  • Kim, Hyuncheol
    • Convergence Security Journal
    • /
    • v.16 no.2
    • /
    • pp.19-23
    • /
    • 2016
  • The design, management, and operation of network infrastructure have evolved during the last few years, leveraging on innovative technologies and architectures. With such a huge trend, due to the flexibility and significant economic potential of these technologies, software defined networking (SDN) and network functions virtualization (NFV) are emerging as the most critical key enablers. SDN/NFV enhancing the infrastructure agility, thus network operators and service providers are able to program their own network functions (e.g., gateways, routers, load balancers) on vendor independent hardware substrate. They facilitating the design, delivery and operation of network services in a dynamic and scalable manner. In NFV, the management and orchestration (MANO) orchestrates other specific managers such as the virtual infrastructure manager (VIM) and the VNF Manager (VNFM). In this paper, we examine the contents of these NFV MANO systematically and proposes a security system in a virtualized environment.

Utilization of Legacy APs for Seamless Handover in a SDN Environment (네트워크 가상화 환경에서 끊김 없는 핸드오버를 위한 일반 AP 활용)

  • Lee, Hyung-Bong;Kwon, Ki-Hyeon
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1545-1554
    • /
    • 2018
  • In order to support the mobility of the wireless devices, at least two APs (Access Points) must be arranged in a single AP area to maintain communication area. In the WLAN (Wireless LAN) environment, seamless handover is one of the most important issues in terms of effective utilization of wireless networks and maximization of services for users. On the other hand, SDN (Software-Defined Networking), which is emerging rapidly in recent years, is revolutionizing network management in terms of flexibility, fine control, and convenience. SDN originally reduces latency time or increases network robustness by real-time flow table control reducing or bypassing paths between switches in LAN-based data centers. In this study, we apply OpenFlow, a SDN platform focused on wired LAN, to a dense WLAN environment using legacy APs to implement and evaluate seamless handover for streaming services of digital contents.

Violation Detection of Application Network QoS using Ontology in SDN Environment (SDN 환경에서 온톨로지를 활용한 애플리케이션 네트워크의 품질 위반상황 식별 방법)

  • Hwang, Jeseung;Kim, Ungsoo;Park, Joonseok;Yeom, Keunhyuk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.6
    • /
    • pp.7-20
    • /
    • 2017
  • The advancement of cloud and big data and the considerable growth of traffic have increased the complexity and problems in the management inefficiency of existing networks. The software-defined networking (SDN) environment has been developed to solve this problem. SDN enables us to control network equipment through programming by separating the transmission and control functions of the equipment. Accordingly, several studies have been conducted to improve the performance of SDN controllers, such as the method of connecting existing legacy equipment with SDN, the packet management method for efficient data communication, and the method of distributing controller load in a centralized architecture. However, there is insufficient research on the control of SDN in terms of the quality of network-using applications. To support the establishment and change of the routing paths that meet the required network service quality, we require a mechanism to identify network requirements based on a contract for application network service quality and to collect information about the current network status and identify the violations of network service quality. This study proposes a method of identifying the quality violations of network paths through ontology to ensure the network service quality of applications and provide efficient services in an SDN environment.