• Title/Summary/Keyword: SDINS/GPS integration

Search Result 11, Processing Time 0.017 seconds

SDINS/GPS/ZUPT Integration Land Navigation System for Azimuth Improvement (방위각 개선을 위한 SDINS/GPS/ZUPT 결합 지상 항법 시스템)

  • Lee, Tae-Gyoo;Cho, Yun-Cheol;Jang, Suk-Won;Park, Jai-Yong;Sung, Chang-Ky
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.5-12
    • /
    • 2006
  • This study describes an SDINS/GPS/ZUPT integration algorithm for land navigation systems. The SDINS error can be decoupled in two parts. The first part is the the Schuler component which does not depend on object motion parameters, and the other is the Non-Schuler part which depends on the product of object acceleration and azimuth error. Azimuth error causes SDINS error in proportion to the traversed distance. The proposed system consists of a GPS/SDINS integration system and an SDINS/ZUPT integration system, which are both realized by an indirect feedforward Kalman filter. The main difference between the two is whether the estimate includes the Non-Schuler error or not, which is decided by the measurement type. Consequently, subtracting GPS/SDINS outputs from SDINS/ZUPT outputs provide the Non-Schuler error information which can be applied to improving azimuth accuracy. Simulation results using the raw data obtained from a van test attest that the proposed SDINS/GPS/ZUPT system is capable of providing azimuth improvement.

Study on SDINS/GPS Kalman Filter using GPS carrier phase rate measurements (GPS 반송파 위상변화율을 이용한 SDINS/GPS 복합항법 필터 구성)

  • Park, Jun-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.42-46
    • /
    • 2006
  • As an application of SDINS/GPS integration for its synergistic results, the SDINS alignments utilizing GPS carrier phase rate measurements. A measurement model of GPS carrier phase rate is derived in order to be used with SDINS alignment process. For in-flight alignment, the performance of the suggested SDINS/GPS integration method is analyzed using the covariance analysis and its results are confirmed by those of van test. Consequently, it is shown that all states of the SDINS integrated system by utilizing GPS carrier phase rate measurements can be estimated more efficiently than a general SDINS/GPS during in-flight alignment.

GPS/SDINS integration model using GPS carrier phase rate measurements (GPS 반송파 위상변화율을 이용한 GPS/SDINS 결합모델)

  • Park Joon-Goo
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • As an application of the GPS/SDINS integration for its synergistic results, the alignments of the SDINS utilizing GPS carrier phase rate measurements is introduced. A measurement model of GPS carrier phase rate, which does not require integer ambiguity determination process, is newly derived in order to be adopted with the SDINS in-flight alignment process. For in-flight alignment, the performance of the GPS/SDINS integration method suggested in this paper is analyzed using the covariance analysis.

  • PDF

Study on Observabi1ity Entrancement of SDINS in-flight using GPS Carrier Phase Measurements (GPS 반송파위상 정보를 이용한 SDINS의 운항중 정렬에 대한 가관측성 향상기법 연구)

  • 박준구;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.54-54
    • /
    • 2000
  • For its synergistic relationship, an integrated SDINS/GPS system has been adopted in many navigation areas. As an application of SDINS/GPS integration, the in-flight alignment process of a SDINS utilizing GPS carrier phase measurements is introduced and analyzed via an observability analysis using nul1 space method. A measurement model of double-differenced GPS carrier phase measurements is newly derived in order to be used with a SDINS error model. Also, conditions for determining the complete observability of a SDINS/GPS system are suggested and proved. Consequently, it is shown that the system is not completely observable in case of one basel me. With one baseline aligned with y-axis of body frame, pitch error and x-axis accelerometer bias are unobservable states. Also shown is that al1 states are completely observable when sequential maneuver is performed. Above results are confirmed by a covariance analysis.

  • PDF

Integration Algorithm of GPS/SDINS/ST for a Space Navigation (우주항법을 위한 GPS/SDINS/ST 결합 알고리듬)

  • Yi, Chang-Yong;Cho, Kyeum-Rae;Lee, Dae-Woo;Cho, Yun-Cheol
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • A GPS/SDINS/ST(Star Tracker) integrated sensor algorithm is more robust than the GPS/SDINS and the ST/SDINS systems on exploration of other planets. Most of the advanced studies shown that GPS/SDINS/ST integrated sensor with centralized Kalman filter was more accurate than those 2 integrated systems. The system, however, consist of a single filter, it is vulnerable to defects on failed data. To improve the problem, we work out a study using federated Kalman filter(No-Reset mode) and centralized Kalman filter with adaptive measurement fusion which known as robustness on fault. The simulation results show that the debasing influences are reduced and the computation is enable at least 100Hz. Further researches that the initial calibration in accordance with observability and applying the exploration trajectory are needed.

Centralized Kalman Filter with Adaptive Measurement Fusion: its Application to a GPS/SDINS Integration System with an Additional Sensor

  • Lee, Tae-Gyoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.444-452
    • /
    • 2003
  • An integration system with multi-measurement sets can be realized via combined application of a centralized and federated Kalman filter. It is difficult for the centralized Kalman filter to remove a failed sensor in comparison with the federated Kalman filter. All varieties of Kalman filters monitor innovation sequence (residual) for detection and isolation of a failed sensor. The innovation sequence, which is selected as an indicator of real time estimation error plays an important role in adaptive mechanism design. In this study, the centralized Kalman filter with adaptive measurement fusion is introduced by means of innovation sequence. The objectives of adaptive measurement fusion are automatic isolation and recovery of some sensor failures as well as inherent monitoring capability. The proposed adaptive filter is applied to the GPS/SDINS integration system with an additional sensor. Simulation studies attest that the proposed adaptive scheme is effective for isolation and recovery of immediate sensor failures.

Development of Correction Algorithm for Integrated Strapdown INS/GPS by using Kalman Filter

  • Lee, Sang-Jong;Naumenko, C.;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 2001
  • The Global Positioning System(GPS) and the Strapdown Inertial Navigation System(SDINS) techniques have been widely utilized in many applications. However each system has its own weak point when used in a stand-alone mode. SDINS suffers from fast error accumulation dependent on an operating time while GPS has problem of cycle slips and just provides low update rate. The best solution is to integrate the GPS and SDINS system and its integration allows compensation for each shortcomings. This paper, first, is to define and derive error equations of integrated SDINS/GPS system before it will be applied on a real hardware system with gyro, accelerometer and GPS receiver. Second, the accuracy, availability and performance of this mechanization are verified on the simulation study.

  • PDF

Performance Testing of Integrated Strapdwon INS and GPS

  • Lee, Sang-Joog;Yoo, Chang-Sun;Shim, Yo-Han;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.67-77
    • /
    • 2001
  • In recent navigation system, the profitable solution is to integrate the GPS and Stapdwon INS (SDINS) system and its integration allows compensation for shortcomings of each system. This paper describes the hardware preparation and presents the test results obtained from the automobile test of the developed system. The automobile tests was conducted with two kinds of inertial sensors and GPS receivers : short range and middle range test, to verify and evaluate the performance of the integrated navigation system. The reference of position is given by the Differential GPS(DGPS) which has cm-level accuracy to compare the accuracy of system. Kalman filtering is used for integrating GPS and SDINS and this filter effectively allows the long-term stability of GPS to correct and decrease the time deviation error of SDINS.

  • PDF

The AGPS/INS Integrated Navigation System Design Using Triple Difference Technique (삼중 차분 기법을 이용한 AGPS/INS 통합 항법 시스템 설계)

  • 오상헌;박찬식;이상정;황동환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.736-744
    • /
    • 2003
  • The GPS attitude output or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS information is directly applied to the AGPS/INS integration system, the performance of the system can be rapidly degraded. This paper proposes an AGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which inertial information is combined. Computer simulations and van test were performed to verify the proposed integration system. The results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correct and the cycle slip occurs.

Design of an Adaptive Filter for GPS/GLONASS Aided Inertial Navigation System (GPS/GLONASS 보정 관성항법시스템의 적응필터 설계)

  • 박흥원;제창해;정태호;박찬빈
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.201-210
    • /
    • 1998
  • Inertial Navigation System(INS) can provide the vehicle position and velocity information using inertial sensor outputs without the use of external aids. Unfortunately INS navigation error increases with time due to inertial sensor errors, and therefore it is desirable to combine INS with external aids such as GPS, TACAN, OMEGA, and etc.. In this paper we propose an integration algorithm of commercial GPS/GLONASS and INS where an adaptive filter for signal processing of GPS/GLONASS receiver and the 12th order Kalman filter for aided strapdown INS(SDINS) we employed. Simulation results show that the proposed adaptive filter can effectively remove a randomly occurring abrupt jump due to sudden corruption of the received satellite signal and that the Kalman filter performs satisfactorily.

  • PDF