• Title/Summary/Keyword: SD(SI)

Search Result 184, Processing Time 0.025 seconds

Autumn Migration of Black-faced Spoonbill (Platalea minor) Tracked by Wild-Tracker in East Asia (야생동물위치추적기를 이용한 동아시아 저어새(Platalea minor)의 가을 이동경로)

  • Jung, Sang-Min;Kang, Jung-hoon;Kim, In-Kyu;Lee, Han-soo;Lee, Si-Wan;Oh, Hong-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.5
    • /
    • pp.478-485
    • /
    • 2018
  • With the total population of 3,356 worldwide as of 2016, the black-faced spoonbill (Platalea minor) is designated as "endangered (EN)" species by IUCN. About 70% of population breeds on the uninhabited islands near the west coast of Korea and wintering area is Taiwan, China, Hong Kong, etc. However, there is few detail research in Korea and East Asia on black-faced spoonbill's long range migration and its habitat when migrating southward. We studied black-faced spoonbill's migration route, distribution, stopover, wintering sites, and timing of migration movements using a wild-tracker (WT-200, GPS-Mobile phone based telemetry, KoEco). We caught the black-faced spoonbills in the breeding sites (Gugi island, Bi island, Sangyeobawi, Chilsan island) in Korea in late June 2014. We attached the wild-tracker to 10 juvenile black-faced spoonbills. The tracking showed that the black-faced spoonbills started southward migration between late October and early November. The traveling distance to wintering site was maximum at 1,820 km, minimum at 746 km, the average at 1,201km. The maximum daily traveling distance was 1,479 km with an average of 782 km. The average days it took from breeding site to wintering site was 10 days (SD=10.7). The shortest duration was 2 days, and the longest duration was 34 days. Most individuals used 2-3 stopover sites between the breeding sites to the wintering sites and stayed almost 1-2 days (maximum 31 days). Stopover sites were wetlands such as rivers, streams, reservoir, and mud flat. The wintering sites were coastal areas (five individuals) in China, inland (one individual) in China, Taiwan (three individuals), and Japan (one individual). In conclusion, it is necessary to preserve the stopover sites and wintering site of the black-faced spoonbills through consultation and protection policy between countries and establish the systematic preservation measures and activity plans through continued moniting and additional studies.

Development of Position Encoding Circuit for a Multi-Anode Position Sensitive Photomultiplier Tube (다중양극 위치민감형 광전자증배관을 위한 위치검출회로 개발)

  • Kwon, Sun-Il;Hong, Seong-Jong;Ito, Mikiko;Yoon, Hyun-Suk;Lee, Geon-Song;Sim, Kwang-Souk;Rhee, June-Tak;Lee, Dong-Soo;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.6
    • /
    • pp.469-477
    • /
    • 2008
  • Purpose: The goal of this paper is to present the design and performance of a position encoding circuit for $16{\times}16$ array of position sensitive multi-anode photomultiplier tube for small animal PET scanners. This circuit which reduces the number of readout channels from 256 to 4 channels is based on a charge division method utilizing a resistor array. Materials and Methods: The position encoding circuit was simulated with PSpice before fabrication. The position encoding circuit reads out the signals from H9500 flat panel PMTs (Hamamatsu Photonics K.K., Japan) on which $1.5{\times}1.5{\times}7.0\;mm^3$ $L_{0.9}GSO$ ($Lu_{1.8}Gd_{0.2}SiO_{5}:Ce$) crystals were mounted. For coincidence detection, two different PET modules were used. One PET module consisted of a $29{\times}29\;L_{0.9}GSO$ crystal layer, and the other PET module two $28{\times}28$ and $29{\times}29\;L_{0.9}GSO$ crystal layers which have relative offsets by half a crystal pitch in x- and y-directions. The crystal mapping algorithm was also developed to identify crystals. Results: Each crystal was clearly visible in flood images. The crystal identification capability was enhanced further by changing the values of resistors near the edge of the resistor array. Energy resolutions of individual crystal were about 11.6%(SD 1.6). The flood images were segmented well with the proposed crystal mapping algorithm. Conclusion: The position encoding circuit resulted in a clear separation of crystals and sufficient energy resolutions with H9500 flat-panel PMT and $L_{0.9}GSO$ crystals. This circuit is good enough for use in small animal PET scanners.

Laval Growth Rate of Nannophya pygmaea(Odonata: Libellulidae), an Endangered Dragonfly in Korea (한국의 멸종위기종인 꼬마잠자리 (Nannophya pygmaea Rambur: 잠자리과, 잠자리목) 유충의 성장률)

  • Kim, Dong-Gun;Yoon, Tae-Joong;Oh, Chi-Gyeong;Kim, Jae-Geun;Lee, Eun-Heui;Bae, Yeon-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.290-294
    • /
    • 2009
  • Larval development of Nannopaya pygmaea Rambur (Libellulidae), an endangered dragonfly in Korea, was studied using an introduced lariat population in an artificial wetland habitat. Artificial habitat was created in a green house which imitated a small wetland in Boryeong-si, Chungcheongnam-do, Korea, where N. pygmaea inhabited. A total of 300 N. pygmaea larvae were introduced to the artificial habitat in June 2007. Larvae were recaptured five times between June 2007 and November 2008 for measurement of body length. As a result, the initial and recaptured populations (Recaptured I, II, III, IV, and V populations, respectively) contained two body size groups [initial 6.20$\pm$0.34 mm and 7.94$\pm$0.46 mm (mean$\pm$SD); Recaptured I 2.84$\pm$0.43 mm and 5.16$\pm$0.83 mm; Recaptured II 5.96$\pm$0.66 mm and 8.02$\pm$0.35 mm; Recaptured III 5.97$\pm$0.73 mm and 7.82$\pm$0.37 mm; Recaptured IV 7.04$\pm$0.93 mm and 8.52$\pm$0.39 mm; Recaptured V 5.72$\pm$0.60 mm and 7.71$\pm$0.30 mm]. Our rearing experiment evidenced that the recaptured I-V populations are the offspring of the initial population and the offspring grew approximately 3 mm at 470 degree days. It was also estimated that N. pygmaea larvae need approximately 100 degree days to grow 0.7 mm in body length.

Phase Image Analysis in Conduction Disturbance Patients (심실내 전도장애 환자에서의 $^{99m}Tc$-RBC Gated Blood-Pool Scintigraphy을 통한 Phase Image Analysis)

  • Kwak, Byeng-Su;Choi, Si-Wan;Kang, Seung-Sik;Park, Ki-Nam;Lee, Kang-Wook;Jeon, Eun-Seok;Park, Chong-Hun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.1
    • /
    • pp.44-51
    • /
    • 1994
  • It is known that the normal His-Purkinje system provides for nearly synchronous activation of right (RV) and left (LV) ventricles. When His-Purkinje conduction is abnormal, the resulting sequence of ventricular contraction must be correspondingly abnormal. These abnormal mechanical consequences were difficult to demonstrate because of the complexity and the rapidity of it's events. To determine the relationship of the phase changes and the abnormalities of ventricular conduction, we performed phase image analysis of $^{99m}Tc$-RBC gated blood pool scintigrams in patients with intraventricular conduction disturbances (24 complete left bundle branch block (C-LBBB), 15 complete right bundle branch block (C-RBBB), 13 Wolff-Parkinson-White syndrome (WPW), 10 controls). The results were as follows; 1) The ejection fraction (EF), peak ejection rate (PER), and peak filling rate (PFR) of LV in gated blood pool scintigraphy (GBPS) were significantly lower in patients with C-LBBB than in controls ($44.4{\pm}13.9%$ vs $69.9{\pm}4.2%,\;2.48{\pm}0.98$ vs $3.51{\pm}0.62,\;1.76{\pm}0.71$ vs $3.38{\pm}0.92$, respectively, p<0.05). 2) In the phase angle analysis of LV, Standard deviation (SD), width of half maximum of phase angle (FWHM), and range of phase angle were significantly increased in patients with C-LBBB than in controls ($20.6{\pm}18.1$ vs $8.6{\pm}1.8,\;22.5{\pm}9.2$ vs $16.0{\pm}3.9,\;95.7{\pm}31.7$ vs $51.3{\pm}5.4$, respectively, p<0.05). 3) There was no significant difference in EF, PER, PFR between patients with the Wolff-parkinson-White syndrome and controls. 4) Standard deviation and range of phase angle were significantly higher in patients with WPW syndrome than in controls ($10.6{\pm}2.6$ vs $8.6{\pm}1.8$, p<0.05, $69.8{\pm}11.7$ vs $51.3{\pm}5.4$, p<0.001, respectively), however, there was no difference between the two groups in full width of half maximum. 5) Phase image analysis revealed relatively uniform phase across the both ventricles in patients with normal conduction, but markedly delayed phase in the left ventricle of patients with LBBB. 6) In 13 cases of WPW syndrome, the site of preexcitation could be localized in 10 cases (77%) by phase image analysis. Therefore, it can be concluded that phase image analysis can provide an accurate noninvasive method to detect the mechanical consequences of a wide variety of abnormal electrical activation in ventricles.

  • PDF