• Title/Summary/Keyword: SCT Thin Film

Search Result 32, Processing Time 0.024 seconds

Influence of Substrate Temperature of SCT Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 SCT 박막의 기판온도 영향)

  • Kim Jin-Sa;Oh Yong-Cheol;Cho Choon-Nam;Lee Dong-Gyu;Shin Cheol-Gi;Kim Chung-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.10
    • /
    • pp.505-509
    • /
    • 2004
  • The (Sr/sub 0.9/Ca/sub 0.1/)TiO₃(SCT) thin films are deposited on Pt-coated electrode(Pt/TiN/SiO₂/Si) using RF sputtering method at various substrate temperature. The optimum conditions of RF power and Ar/O₂ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin film was about 18.75[Å/min]. The crystallinity of SCT thin films were increased with increase of substrate temperature in the temperature range of 100~500[℃]. The dielectric constant of SCT thin films were increased with the increase of substrate temperature, and changed almost linearly in temperature ranges of -80~+90[℃]. The current-voltage characteristics of SCT thin films showed the increasing leakage current as the substrate temperature increases.

Structural Properties of SCT Thin Film with Deposition and Annealing Temperature (증착 및 열처리온도에 따른 SCT 박막의 구조적인 특성)

  • Kim, Jin-Sa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.41-45
    • /
    • 2007
  • The (SrCa)$TiO_3$(SCT) thin films were deposited on Pt-coated electrode(Pt/TiN/$SiO_2$/Si) using RF sputtering method according to the deposition condition. The crystallinity of SCT thin films were increased with increase of deposition temperature in the temperature range of $100{\sim}500[^{\circ}C]$. The optimum conditions of RF power and Ar/$O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about $18.75[{\AA}/min]$ at the optimum condition. The composition of SCT thin films deposited on Si substrate is close to stoichiometry (1.081 in A/B ratio). The maximum dielectric constant of SCT thin film was obtained by annealing at $600[^{\circ}C]$.

  • PDF

Microstructure and Structural Properties of SCT Thin Film (SCT 박막의 미세구조 및 구조적인 특성)

  • Kim, Jin-Sa;Oh, Yong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.576-580
    • /
    • 2006
  • The $(Sr_{0.85}Ca_{0.15})TiO_3(SCT)$ thin films were deposited on Pt-coated electrode $(Pt/TiN/SiO_2/Si)$ using RF sputtering method according to the deposition condition. The crystallinity of SCT thin films were increased with increase of deposition temperature in the temperature range of $100{\sim}500[^{\circ}C]$. The optimum conditions of RF power and $Ar/O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about $18.75[{\AA}/min]$ at the optimum condition. The composition of SCT thin films deposited on Si substrate is close to stoichiometry (1.102 in A/B ratio). The maximum dielectric constant of SCT thin film as obtained by annealing at $600^{\circ}C$.

Electrical Properties of Pt/SCT/Pt Thin Film Structure (Pt/SCT/Pt 박막 구조의 전기적인 특성)

  • Kim, Jin-Sa;Shin, Cheol-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1786-1790
    • /
    • 2007
  • The $(SrCa)TiO_3(SCT)$ thin films are deposited on Pt-coated electrode ($Pt/TiN/SiO_2/Si$) using RF sputtering method at various deposition temperature. The dielectric constant of SCT thin films were increased with the increase of deposition temperature, and changed almost linearly in temperature ranges of $-80{\sim}+90[^{\circ}C]$. Also, SCT thin films was observed the phenomena of dielectric relaxation with the increase of frequency, and the relaxation frequency was observed above 200[kHz]. V-I characteristics of SCT thin films show the increasing leakage current with the increases of deposition temperature. The conduction mechanism of the SCT thin films observed in the temperature range of $25{\sim}100[^{\circ}C]$ can be divided into three characteristic regions with different mechanism by the increasing current. The region 1 below 0.8[MV/cm] shows the ohmic conduction. The region 2 can be explained by the Child's law, and the region 3 is dominated by the tunneling effect.

Fabrication and Properties of SCT Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 SCT 박막의 제조 및 특성)

  • 김진사;김충혁
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.436-440
    • /
    • 2003
  • The (S $r_{0.85}$C $a_{0.15}$)Ti $O_3$(SCT) thin films were deposited on Pt-coated electrode(Pt/TiN/ $SiO_2$/Si) using RF sputtering method according to the deposition condition. The optimum conditions of RF power and Ar/ $O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about 18.75[$\AA$/min] at the optimum condition. The composition of SCT thin films deposited on Si substrate is close to stoichiometry (1.102 in A/B ratio). The capacitance characteristics had a stable value within $\pm$4[%]. The drastic decrease of dielectric constant and increase of dielectric loss in SCT thin films were observed above 200[kHz]. SCT thin films used in this study showed the phenomena of dielectric relaxation with the increase of frequency.ncy.

A Study on the Microstructure and Properties of SCT Thin Film (SCT 박막의 미세구조 및 특성에 관한 연구)

  • So, Byung-Moon;Bang, Jun-Ho;Kim, Jin-Sa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.55-59
    • /
    • 2005
  • The ($Sr_{1-x}Ca_{x})Ti_{3}$(SCT) thin film are deposited on Pt-coated electrode (Pt/TiN/$SiO_{2}$/Si) using RF sputtering method. The maximum dielectric constant of SCT thin film is obtained by annealing at 600[$^{\circ}C$]. The temperature properties of the dielectric loss have a value within 0.02 in temperature lunges of -80 $\∼$ +90[$^{\circ}C$]). The capacitance characteristics had a stable value within ${\pm}4\%$. The drastic decrease of dielectric constant and increase of dielectric loss in SCT thin films is observed above 200[kHz).

  • PDF

Properties with Annealing Temperature of SCT Ceramic Thin Film (SCT 세라믹 박막의 열처리온도 특성)

  • Kim, J.S.;Cho, C.N.;Oh, Y.C.;Shin, C.G.;Choi, W.S.;Kim, C.H.;Lee, J.U.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.566-569
    • /
    • 2002
  • The $(Sr_{0.9}Ca_{0.1})TiO_3$(SCT) thin films are deposited on Pt-coated electrode (Pt/TiN/$SiO_2$/Si) using RF sputtering method. The maximum dielectric constant of SCT thin film is obtained by annealing at $600[^{\circ}C]$. The temperature properties of the dielectric loss have a value within 0.02 in temperature ranges of $-80{\sim}+90[^{\circ}C]$. The capacitance characteristics had a stable value within ${\pm}4[%]$. The drastic decrease of dielectric constant and increase of dielectric loss in SCT thin films is observed above 200[kHz].

  • PDF

V-I Characteristics of SCT Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 SCT 박막의 전압-전류 특성)

  • 김진사;조춘남;신철기;최운식;김충혁;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.745-750
    • /
    • 2000
  • The (S $r_{0.85}$C $a_{0.15}$) Ti $O_3$(SCT) thin films are deposited on Pt-coated electrode (Pt/TiN/ $SiO_2$/Si) using RF sputtering method at various deposition temperature. The crystallinity of SCT thin films were increased with increase of deposition temperature in the temperature range of 200~500[$^{\circ}C$]. Also, the composition of SCT thin films were closed to stoichiometry (1.080~1.111 in A/B ratio). V-I characteristics of SCT thin films show the increasing leakage current with the increases of deposition temperature. The conduction mechanism of the SCT thin films observed in the temperature range of 25~100[$^{\circ}C$] can be divided into four regions with different mechanism by the increasing current. The region I below 0.8[MV/cm]shows the ohmic conduction. The region II between 0.9~2[MV/cm] is in proportion to J∝ $E^{1.5}$ , the region III between 2~4[MV/cm] can be explained by the Child’s law, and the region IV above 4[MV/cm]is dominated by the tunneling effect.ect.

  • PDF

Microstructure and Properties of $(Sr_{0.85}Ca_{0.15})TiO_3$ Thin Film with Annealing Temperature (열처리온도에 따른 $(Sr_{0.85}Ca_{0.15})TiO_3$박막의 구조 및 특성)

  • 김진사;조춘남;신철기;최운식;김충혁;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.802-807
    • /
    • 2001
  • The (S $r_{0.85}$C $a_{0.15}$)Ti $O_{3}$(SCT) thin films are deposited on Pt-coated electrode (Pt/TiN/ $SiO_2$/Si) using RF sputtering method. The composition of SCT thin films deposited on Si substrate at woom temperature is close to stoichiometry(1.102 in A/B ratio). The maximum dielectric constant of SCT thin films is obtained by annealing at 600[$^{\circ}C$]. The capacitance characteristics had a stable value within $\pm$4[%]. The drastic decrease of dielectric constant and increase of dielectric loss in SCT thin films is observed above 200[kHz]. SCT thin films used in this study show the phenomena of dielectric relaxation with the increase of frequencey.cey.

  • PDF

Properties of MIM Ceramic Thin Film Structure (MIM 세라믹 박막 구조의 특성 분석)

  • Kim, Jin-Sa;Cho, Choon-Nam;Choi, Woon-Shick;Song, Min-Jong;So, Byeong-Mun;Kim, Chung-Hyeok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.333-334
    • /
    • 2008
  • The SCT thin films were deposited on Pt-coated electrode using RF sputtering method according to the deposition condition. The crystallinity of SCT thin films were increased with increase of deposition temperature in the temperature range of 100~500[$^{\circ}C$]. The optimum conditions of RF power and Ar/$O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about 18.75[$\AA$/min] at the optimum condition. The maximum dielectric constant of SCT thin film was obtained by annealing at $600^{\circ}C$.

  • PDF