• Title/Summary/Keyword: SCSF

Search Result 2, Processing Time 0.016 seconds

Cooperative Analog and Digital (CANDI) Time Synchronization for Large Multihop Network (다중 홉 네트워크를 위한 디지털 및 아날로그 협동 전송 시간 동기화 프로토콜)

  • Cho, Sung-Hwan;Ingram, Mary Ann
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1084-1093
    • /
    • 2012
  • For large multihop networks, large time synchronization (TS) errors can accumulate with conventional methods, such as TPSN, RBS, and FTSP, since they need a large number of hops to cover the network. In this paper, a method combining Concurrent Cooperative Transmission (CCT) and Semi- Cooperative Spectrum Fusion (SCSF) is proposed to reduce the number of hops to cover the large network. In CCT, cooperating nodes transmit the same digitally encoded message in orthogonal channels simultaneously, so receivers can benefit from array and diversity gains. SCSF is an analog cooperative transmission method where different cooperators transmit correlated information simultaneously. The two methods are combined to create a new distributed method of network TS, called the Cooperative Analog and Digital (CANDI) TS protocol, which promises significantly lower network TS errors in multi-hop networks. CANDI and TPSN are compared in simulation for a line network.

MUVIS: Multi-Source Video Streaming Service over WLANs

  • Li Danjue;Chuah Chen-Nee;Cheung Gene;Yoo S. J. Ben
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.144-156
    • /
    • 2005
  • Video streaming over wireless networks is challenging due to node mobility and high channel error rate. In this paper, we propose a multi-source video streaming (MUVIS) system to support high quality video streaming service over IEEE 802.1l-based wireless networks. We begin by collocating a streaming proxy with the wireless access point to help leverage both the media server and peers in the WLAN. By tracking the peer mobility patterns and performing content discovery among peers, we construct a multi-source sender group and stream video using a rate-distortion optimized scheme. We formulate such a multi-source streaming scenario as a combinatorial packet scheduling problem and introduce the concept of asynchronous clocks to decouple the problem into three steps. First, we decide the membership of the multisource sender group based on the mobility pattern tracking, available video content in each peer and the bandwidth each peer allocates to the multi-source streaming service. Then, we select one sender from the sender group in each optimization instance using asynchronous clocks. Finally, we apply the point-to-point rate-distortion optimization framework between the selected sender-receiver pair. In addition, we implement two different caching strategies, simple caching simple fetching (SCSF) and distortion minimized smart caching (DMSC), in the proxy to investigate the effect of caching on the streaming performance. To design more realistic simulation models, we use the empirical results from corporate wireless networks to generate node mobility. Simulation results show that our proposed multi-source streaming scheme has better performance than the traditional server-only streaming scheme and that proxy-based caching can potentially improve video streaming performance.