• Title/Summary/Keyword: SCS 단위도

Search Result 51, Processing Time 0.028 seconds

On the Types and Functions of English Subordination including Smallest Small Clauses (영어 종속접속의 유형과 기능: 극소절을 포함하여)

  • Hong, Sungshim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.134-139
    • /
    • 2021
  • This paper discusses the types and functions of English subordinate clauses, whether English subordinate clauses (SC) are headed by a Complementizer (CP) or headed by a lexical (but not functional) Preposition (PP). Furthermore, unlike the standard classification, the current paper provides a finer-grained analysis and classification of English SCs. The traditional or prescriptive view on the functions of English SCs includes Noun SC such as complement clauses, Adjectival SC including relative clauses, and Adverbial SCs that cover a garden variety of subordinators. Added to the existing classification of subordination in English is what I notate as Verbless subordinate clause (V-less SC). Of these 4 different types of subordinate clauses with different functions, properties, and distributions, Subjectless Verbless subordinate clause is further divided into Smallest small clause (SSC) which accounts for English subordination mechanism more uniformly and consistently with respect to their clausal architecture, especially when the subordinate clause is neither PP nor CP.

Analysis of the Direct Runoff by Using the Geomorpologic Parameters of Watersheds (유역(流域)의 지상인자(地上因子)를 이용(利用)한 홍수량(洪水量) 해석(解析))

  • Suh, Seung Duk;Lee, Seung Yook
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.55-66
    • /
    • 1989
  • The purpose of this study is to estimate the flood discharge and peak time by the SCS method and the probability method using the geomorpologic parameters obtained from the topographic maps following the law of stream classifying and, ordering by Horton and Strahler. The SCS method and the probability method are used in estimating the times to peak and the flood discharges at An-dong, Im-ha, and Sun-san basins in the Nakdong River system. The results obtained are as follows : 1. The range of the values of the area ratio, the bifurcation ratio and the length ratio agree with those of natural streams presented by Horton and Strahler. 2. Comparisons of the probability method and observed values show that small relative errors of 0-7% of flood discharge, and 0-2hr, difference in time to peak respectivly. But the SCS method shows that large relative errors of 10-40% of flood discharge, and 0-4hr, difference in time to peak. 3. When the rainfall intensity is large, the error of flood discharge estimated by using the probability method is relativly small.

  • PDF

An Analysis of critical duration for Design of Hydraulic Structure (수공구조물 설계를 위한 임계지속시간 결정)

  • Lee, Sangjin;Kim, Woo Gu;Whang, Manha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.814-818
    • /
    • 2004
  • 최근 기상이변이 빈번하여 자연재해에 대한 방재대책의 중요함이 절실히 요청되는 시점에서 수공구조물들의 설계빈도를 상향조정하는 등의 대책이 마련되고 있는 실정을 고려할 때 유역의 수문학적 안정성을 확보하기 위한 최적방안을 마련하는데 필요한 강우의 임계지속시간 결정에 대한 연구를 수행하였다. 홍수제어를 위한 수공구조물은 그 특성상 계획홍수량 결정에 최대치 개념이 도입되어야 하므로, 설계강우의 지속기간을 결정할 경우 강우로 인한 최대유출과 홍수총량이 최대가 되는 임계지속기간을 이용하여 검토하는 것이 필요하다. 본 연구에서는 합성단위도(Clark방법, Nakayasu방법, SCS방법)등 각 수문요소에 따른 임계지속기간의 변동양상을 파악한 길과 24시간 강우지속시간시 총유출량 보다 임계지속시간개념으로 산정한 유출량이 크게 산출되었으며, 시간분포모형(Huff의 4분위법, IDF곡선 분포법, Mononobe방법)별 적합성을 평가함으로써 수문설계시 활용 할 수 있는 자료를 제시하고자 하였다.

  • PDF

A Study on the Runoff Characteristics m Kangwon Watershed (So-yang River Watershed) (강원도 유역의 유출 특성에 관한 연구 (소양강댐 유역 중심으로))

  • Choi, Han-Kyu;Beak, Hyo-Sun;Lee, Min-Seop
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.223-232
    • /
    • 2001
  • This study is finding the most appropriate model of kangwondo watershed. To synthesize each hydrograph, It is found to several parameters which are used in existing hydrographes. then the synthestic hydrograph is compared and investigated with many hydrographes of the rivers in kanwondo. These methods, Nakayasu, Clark, SCS are used to calculate the run-off of this watershed. When the calculated run-off is compared with real rating-curves, then it is found that the SCS method using the Clark's concentrantion time is the best way on this area having large watershed, long river length and gentle water slope, the Nakayasu method is more suitable on this area having small watershed, short river length and steep water slope. Also it is founded from analyzing run-off hydrographes, peak run-off and peak time that the Clark's method applied Kirpich's concentration time way is suitable in the area of kangwondo.

  • PDF

Runoff Analysis of Kumho River Basin Using HEC-HMS (HEC-HMS를 이용한 금호강 유역의 유출분석)

  • Jung, Chan-Yong;Lim, Hyuk-Jin;Song, In-Ryeol;Lee, Jin-Won;Jung, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1078-1083
    • /
    • 2009
  • HEC-HMS(Hydrologic Modeling System)은 강우-유출 모의를 위한 차세대 소프트웨어이며 HEC-1에 포함되어 있는 단위도 및 수문학적 홍수추적 이외에도 격자형 강우자료(레이더 데이터)를 이용하여 적용할 수있는 유사분포 유출변화와 장기 연속모의에 적용할 수 있는 간단한 수분감소 등을 추가적으로 포함하고 있다. 또한 GUI(Graphical User Interface)환경, 통합 수문분석 성분, 자료 저장 및 관리 능력, 그래�d 처리 및리포트 출력기능으로 구성되어 있으며 여러 가지 프로그램 언어(C, C++, Fortran)를 이용하여 개발되었다. 본 연구에서는 낙동강 수계의 금호강에 위치한 동촌 지점을 유출구로 선정하고 5개의 소유역과 두 개의 하도로 구성하여 유출모의를 실시하였으며 수문자료 선정은 2007년$^{\sim}$2008년에 발생한 홍수사상과 유량조사 사업단에서 개발한 수위-유량관계곡선식을 활용하였다. 또한, HEC-GeoHMS 모형을 GIS와 연계하여 지형인자를 추출하고 추출된 지형인자를 이용하여 매개변수를 산정하였다. HEC-HMS 모형의 계산 조건에서 손실 우량은 SCS CN, 유출변환은 Clark 단위도법을 적용하였다. 또한 관측치와 계산치의 적합도 검증은 평균제곱 근오차(root mean squar error; RMSE)와 모형 효율성 계수(model efficiency; ME)를 산정하여 분석하였다

  • PDF

Analysis of Runoff in Han Stream through Optimization of Parameter on HEC-1 connected with WMS (WMS와 연계된 HEC-1 모형의 매개변수 최적화를 통한 한천 유역의 유출해석에 관한 연구)

  • Kang, Jeong Hoon;Lee, Eun Tae;Lee, Joo Heon;Park, Sang Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1162-1166
    • /
    • 2004
  • 본 연구에서는 미국의 Environmental Modeling Research Laboratory(EMRL)에서 개발한 지리정보시스템과 수문유출모형이 접목된 WMS(Watershed Modeling System) Ver.6.1 모형을 HEC-1모형과 연계하여 한강수계 안성천의 제1지류인 한천의 유출 해석을 실시하였다. 이를 위해 유역내의 지형특성인자 추출 및 하천망 구성(WMS), 재현기간별 지속시간별 확률강우량 산정(FARD2002), Huff분포법을 이용한 시간분포, ARF(Area Reduction Factor)적용, HEC-1내의 SCS단위도법, Snyder 단위도법, Clark의 유역추적법에 포함된 각각의 매개변수의 최적화를 시도하여 분석하고, 설계 홍수량 산정시 이용될 수 있는 지침 마련을 목적으로 하였다.

  • PDF

Rainfall-Runoff Analysis in the Whangryong River Basin Using HEC-HMS and HEC-GeoHMS (HEC-HMS, HEC-GeoHMS를 이용한 황룡강유역의 유출분석)

  • Kim, Chul;Park, Nam-Hee
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.275-287
    • /
    • 2002
  • Rainfall-Runoff Analysis in Whangryong River Basin was made using HEC-HMS and HEC-GeoHMS. The Basin was divided into three sub-basins using HEC-CeoHMS and GIS. Then, GIS input data were derived from each sub-basins. SCS CN runoff-volume model, Snyder's UH direct-runoff model, exponential recession baseflow model and Muskingum routing model in HEC-HMS were used to simulate the runoff volume using selected rainfall event and the parameters were optimized. Peak flowrate calculated using optimized parameters was compared to the observed flowrate in the basin. The result proved to be good agreement with each other. Optimized parameters in this local basin can be used to calculate the peak flowrate in the future.

  • PDF

A Proposal of Unit Hydrograph Using Statistical Analysis in Oedo Stream, Jeju (통계적 기법을 적용한 외도천의 단위유량도 제안)

  • Lee, Jun-Ho;Yang, Sung-Kee;Jung, Woo-Yul
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.393-401
    • /
    • 2015
  • Rainfall-runoff model of Jeju Oedo Stream was used to compute the optimal unit hydrograph by HEC-HMS model that reflecting on watershed characteristics. Each rainfall event was comparatively analyzed with the actual flow measurement using Clark, Snyder and SCS synthetic methods for derived unit hydrograph. Subsequently, the null hypothesis was established as p-value for peak flow and peak time of each unit hydrograph by one-way ANOVA(Analysis of variance) was larger than significance level of 0.05. There was no significant difference in peak flow and peak time between different methods of unit hydrograph. As a result of comparing error rate with actual flow measurement data, Clark synthetic unit graph best reflected in Oedo Stream as compared to other methods, and error rate of Clark unit hydrograph was 0.02~1.93% and error rate at peak time was 0~2.74%.

Analyis of stormwater and runoff characteristics in Anseongcun basin using HEC-HMS (HEC-HMS을 이용한 안성천 유역의 강우 유출 특성 분석)

  • Hwang, Byung-Gi;Yang, Seung-Bin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.17-24
    • /
    • 2018
  • The HEC-HMS model was applied to identify the rainfall-runoff processes for the Anseongchun basin, where the lower part of the stream has been damaged severely by tropical storms in the past. Modeling processes include incorporating with the SCS-CN model for loss, Clark's UH model for transformation, exponential recession model for baseflow, and Muskingum model for channel routing. The parameters were calibrated through an optimization technique using a trial and error method. Sensitivity analysis after calibration was performed to understand the effects of parameters, such as the time of concentration, storage coefficient, and base flow related constants. Two storm water events were simulated by the model and compared with the corresponding observations. Good accuracy in predicting the runoff volume, peak flow, and the time to peak flow was achieved using the selected methods. The results of this study can be used as a useful tool for decision makers to determine a master plan for regional flood control management.

The Application and Analysis of Scale Effect on Dynamic Flood Frequency Analysis (동역학적 홍수빈도 모형의 적용 및 해상도 영향 분석)

  • Mun, Jang-Won;Yu, Cheol-Sang;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.81-90
    • /
    • 2001
  • A dynamic flood frequency analysis model was proposed for the frequency analysis in ungaged catchment and applied to 6 subbasins in Pyungchang River basin. As the dynamic flood frequency model requires precipitation, rainfall loss system, and runoff analysis, we adopt the rectangular pulse model, the SCS formula, and the geomorphoclimatic IUH(GcIUH) for the application. Input data for the analysis was borrowed from the results of the statistical flood frequency analysis using L-moment method for the same catchment, and then the return period was estimated using the model. This result was also compared with the return period estimated from the statistical analysis. By comparing with the results from two cases, we found the dynamic flood frequency analysis gave higher estimates than those from statistical analysis for the whole subbasins. However, the dynamic flood frequency analysis model has a potential to be used for determining the design flood for small hydraulic structure in ungaged catchment because it uses only physical parameters for flood frequency analysis. And this model can be easily applicable to other watersheds as the scale effect is negligible.

  • PDF