• 제목/요약/키워드: SCR system

검색결과 377건 처리시간 0.034초

Cathode Side Engineering to Raise Holding Voltage of SCR in a 0.5-㎛ 24 V CDMOS Process

  • Wang, Yang;Jin, Xiangliang;Zhou, Acheng;Yang, Liu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권6호
    • /
    • pp.601-607
    • /
    • 2015
  • A set of novel silicon controlled rectifier (SCR) devices' characteristics have been analyzed and verified under the electrostatic discharge (ESD) stress. A ring-shaped diffusion was added to their anode or cathode in order to improve the holding voltage (Vh) of SCR structure by creating new current discharging path and decreasing the emitter injection efficiency (${\gamma}$) of parasitic Bipolar Junction Transistor (BJT). ESD current density distribution imitated by 2-dimensional (2D) TCAD simulation demonstrated that an additional current path exists in the proposed SCR. All the related devices were investigated and characterized based on transmission line pulse (TLP) test system in a standard $0.5-{\mu}m$ 24 V CDMOS process. The proposed SCR devices with ring-shaped anode (RASCR) and ring-shaped cathode (RCSCR) own higher Vh than that of Simple SCR (S_SCR). Especially, the Vh of RCSCR has been raised above 33 V. What's more, their holding current is kept over 800 mA, which makes it possible to design power clamp with SCR structure for on chip ESD protection and keep the protected chip away from latch-up risk.

Urea-SCR 시스템의 NH3 흡·탈착 특성 및 모델기반 제어 연구 (A Study of NH3 Adsorption/Desorption Characteristics and Model Based Control in the Urea-SCR System)

  • 함윤영;박수열
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.302-309
    • /
    • 2016
  • Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, model based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. On the basis of the transient modeling, the kinetic parameters of the $NH_3$ adsorption and desorption are calibrated with the experimental results performed over the zeolite based catalyst. $NH_3$ storage or surface coverage of SCR catalyst can not be measured directly and has to be calculated, which is taken into account as a control parameter in this model. In order to reduce $NH_3$ slip while maintaining NOx reduction, $NH_3$ storage control algorithm was applied to correct the basic urea quantity. If the actual $NH_3$ surface coverage is higher than the maximal $NH_3$ surface coverage, the urea injection quantity is significantly reduced in the ETC cycle. By applying this logic, the resulting $NH_3$ slip peak can be avoided effectively. With optimizing the kinetic parameters based on standard SCR reaction, it suggests that a simplified, less accurate model can be effective to evaluate the capability of model based control in the ETC cycle.

Experimental studies on the diesel engine urea-SCR system using a double NOx sensor system

  • Tang, Wei;Cai, Yixi;Wang, Jun
    • Environmental Engineering Research
    • /
    • 제20권4호
    • /
    • pp.397-402
    • /
    • 2015
  • SCR has been popularly approved as one of the most effective means for NOx emission control in heavy-duty and medium-duty vehicles currently. However, high urea dosing would lead to ammonia slip. And $NH_3$ sensor for vehicle emission applications has not been popularly used in real applications. This paper presents experimental studies on the diesel engine urea-SCR system by using a double NOx sensor system that is arranged in the downstream of the SCR catalyst based on ammonia cross-sensitivity. It was shown that the NOx conversion efficiency rised as $NH_3/NOx$ increases and the ammonia slip started from the $NH_3/NOx$ equal to 1.4. The increase of temperature caused high improvement of the SCR reaction rate while the space velocity had no obvious change. The ammonia slip was in advance as catalyst temperature or space velocity increase and the ammonia storage reduced as catalyst temperature or space velocity increase. The NOx real-time conversion efficiency rised as the ammonia accumulative storage increase and reached the maximum value gradually.

수중환경용 가압형 메탄올 연료프로세서의 최적운전 연구 (Optimal Operation Condition of Pressurized Methanol Fuel Processor for Underwater Environment)

  • 지현진;최은영;이정훈
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.485-493
    • /
    • 2016
  • Recently submarine and unmanned underwater vehicle (UUV) are equipped with a fuel cell system as an air independent propulsion system. Methanol fuel processor can efficiently supply the hydrogen to the fuel cell system to improve the ability to dive. This study investigated the optimal conditions of the methanol fuel processor that may be used in the closed environment. For this purpose, the numerical model based on Gibbs minimization equation was established for steam reformer and three exhaust gas burners. After simulating the characteristics of steam reformer according to the steam-to-carbon ratio (SCR) and the pressure change, the SCR condition was able to narrow down to 1.1 to 1.5. Considering water consumption and the amount of heat recovered from three burners, the optimum condition of the SCR can be determined to be 1.5. Nevertheless, the additional heat supply is required to satisfy the heat balance of the methanol fuel processor in the SCR=1.5. In other to obtain additional amount of heat, the combustion of methanol is better than the increased of SCR in terms of system design.

건설기계용 Urea-SCR 시스템의 촉매전단에서 암모니아 균질도 해석 및 DeNOx 성능에 관한 연구 (Study on Ammonia Uniformity and DeNOx Analysis in the Urea-SCR System for Construction Machinery)

  • 김동환;박준규;강정호;문성준;박성욱
    • 한국분무공학회지
    • /
    • 제24권2호
    • /
    • pp.51-57
    • /
    • 2019
  • In this study, the spray atomization characteristics of urea injector used in SCR system for construction machinery was analyzed, and the uniformity index at the front of mixer and NOx conversion efficiency were evaluated through numerical analysis. Spray visualization and droplet size/velocity measurement were performed and the measured results were used to verify the spray analysis model to calculate the uniformity index in the exhaust gas after-treatment system. For the flow analysis, STAR-CCM, a three-dimensional CFD, was used and the uniformity index of the SCR system at the front of the mixer was calculated using the droplet dissociation model and the wall collision model. Finally, the DeNOx performance for the average condition of the NRTC driving mode was calculated to understand the NOx conversion efficiency reflecting the exhaust gas temperature. The simulation results show that the uniformity index at the front of mixer was calculated as 0.862 and DeNOx efficiency was 75.9%.

선택적환원촉매를 적용한 중소형 경유차량의 질소산화물 저감 특성 연구 (A Study on $NO_x$ Reduction in a Light Duty Diesel Vehicle Equipped with a SCR Catalyst)

  • 박영준;홍우경;가재금;조용석;주재근;김현옥
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.118-124
    • /
    • 2011
  • To reach the Euro-6 regulations of PM and $NO_x$ for light-duty diesel vehicles, it will be necessary to apply the CDPF and the de-$NO_x$ catalyst. The described system consists of a catalytic configuration, where the CDPF is placed downstream of the diesel engine and followed by a urea injection unit and a urea-SCR catalyst. One of the advantages of this system configuration is that, in this way, the SCR catalyst is protected from PM, and both white PM and deposits become reduced. In the urea-SCR system, the injection control of reductant is the most important thing in order to have good performance of $NO_x$ reduction. The ideal ratio of $NH_3$ molecules to $NO_x$ molecules is 1:1 based on $NH_3$ consumption and having $NH_3$ available for reaction of all of the exhaust $NO_x$. However, under the too low and too high temperature condition, the $NO_x$ reduction efficiency become slower, due to temperature window of SCR catalyst. And space velocity also affects to $NO_x$ conversion efficiency. In this paper, rig-tests were performed to evaluate the effects of $NO_x$ and $NH_3$ concentrations, gas temperature and space velocity on the $NO_x$ conversion efficiency of the urea-SCR system. And vehicle test was performed to verify control strategy of reductatnt injection. The developed control strategy of reductant injection was improved over all $NO_x$ reduction efficiency and $NH_3$ consumption in urea-SCR system. Results of this paper contribute to develop urea-SCR system for light-duty vehicles to meet Euro-5 emission regulations.

SCR 시스템의 탈질 성능 및 압력손실 특성 연구 (A Study on DeNOx and Pressure Drop Characteristics of SCR System)

  • 김정일;장인갑;선칠영;천무환
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 춘계학술대회 논문집
    • /
    • pp.293-294
    • /
    • 2002
  • 화석연료의 연소로부터 발생되는 질소산화물은 산성비, 광화학스모그 및 오존층 파괴에 관여하는 환경오염물질로서 대기오염의 주범이 되고 있다. 연소 후 배기가스 중의 질소산화물 제어를 위한 선택적 촉매환인공정(Selective Catalytic Reduction: SCR)은 안정적이며 고효율 설계가 가능하여 범용적으로 사용되고 있는 기술이다. SCR 공정은 최초 미국에서 개발되었으나 일본과 독일에서 발전시켜왔으며 국내에서도 공정의 핵심기술인 촉매에 대한 다양한 연구를 수행하여 일부에서는 상용화 수준에 이르고 있다. (중략)

  • PDF

가스조성에 따른 선택적 환원촉매의 수은 산화 특성 (Characteristics of Mercury Oxidation by an SCR Catalyst with Gas Composition)

  • 이상섭;김광렬;오광중;전준민;김도증;김주영
    • 한국입자에어로졸학회지
    • /
    • 제8권4호
    • /
    • pp.125-132
    • /
    • 2012
  • Mercury oxidation in an SCR(selective catalytic reduction) catalyst was tested in this study with the conditions simulating the SCR system in full-scale coal-fired flue gas. A commercially available SCR catalyst was located in a temperature-controlled reactor system, and simulated gas was injected into the reactor. Mercury oxidation efficiency was determined from the difference between inlet and outlet elemental mercury concentrations. A control experiment was carried out with the gas composition of 12% $CO_{2}$, 5% $H_{2}O$, 5% $O_{2}$, 500 ppm $SO_{2}$, 400 ppm NO, 400 ppm $NH_{3}$, 5 ppm HCl, and 20 ${\mu}g/m^{3}$ Hg. Additional tests were conducted with different gas composition from the control condition to investigate the effect of gas composition on mercury oxidation in the SCR catalyst.

벽유동 방식 담체를 사용하는 SCR 촉매 반응기에서 재 퇴적이 변환 효율에 미치는 영향에 대한 연구 (Impact of Ash Deposit on Conversion Efficiency of Wall Flow Type Monolithic SCR Reactor)

  • 박수열
    • 동력기계공학회지
    • /
    • 제17권1호
    • /
    • pp.27-35
    • /
    • 2013
  • SCR (Selective Catalytic Reduction) on DPF (Diesel Particulate Filter) is a multi-functional after-treatment device which integrates soot filtration and DeNOx function into a single can. Because of its advantage in package and cost, the SCR on DPF is considered as a potential candidate for future application. It inherently employes wall flow type monolithic reactor so ash included in exhaust gas may deposit inside the inlet channel of this device. This study is intended to identify the impact of ash deposit on SCR reaction under wall flow type monolithic reactor. Simulation approach is used so relevant species transport equations for wall flow type monolith is derived. These equations can be solved together with momentum conservation equations and give solution for conversion performance. Both ash deposit and clean catalyst case are simulated and comparison of these two cases gives an insight for the impact of ash deposit on conversion performance. Ash deposit can be classified as ash layer and ash plug. and impact of ash deposit is described along with different morphology of ash deposit.

대형디젤기관에 적용된 선택적 환원촉매장치 성능시험에 관한 연구 (The Performance Test of SCR System in a Heavy-Duty Diesel Engine)

  • 백두성;이성욱
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.19-25
    • /
    • 2008
  • Selective Catalytic Reduction is effective in the reduction of NOx emission. This research focused to evaluate the performance of a urea-SCR system and was conducted in two procedures. One is SCR reactor test using model gas in order to provide an optimal injection condition itself. In this step, some parametric study on emission temperature, space velocity, aspect ratio and the formation of urea spray were made by using flow visualization and Computation Fluid Dynamics techniques. The basic simulation results contributed in determining the layout for an actual engine test. The other is an engine performance and emission test. The urea injector was placed at the opposite direction of exhaust gases emitted into an exhaust duct and an optimal amount of a reducing agent is estimated accurately under different engine loads and speeds. Furthermore, the variation of NOx emission and applied amount of urea was investigated in terms of modes under the condition of with and without SCR, and other emissions such as PM, CO and NMHC were evaluated quantitatively as well. This research may provide fundamental data for the practical use of urea-SCR in future.