• Title/Summary/Keyword: SCC Jacketing

Search Result 2, Processing Time 0.015 seconds

Numerical simulation on the square column's strengthening characteristics utilizing the SCC jacketing

  • Ammar Tawashi;Soleman Alamoudi;Abdulkadir Aljundi
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.4
    • /
    • pp.283-297
    • /
    • 2023
  • This research aims to simulate and investigate the efficiency of strengthening damaged concrete columns using concrete jacketing.The numerical program included unjacketed reference column made of ordinary RC concrete had a cross-sectional dimension of (100×100) mm and 560 mm long reinforced concrete. These cores were damaged by loading them with approximately 60% of their actual ultimate load capacities as a service load. Then, column specimens were strengthened by applying two types of self-compacting concrete SCC jacketing, which were 25 and 30 mm thick, on all four sides. Exposed to external loads at different directions vertically and horizontally simulate to the seismic load. The 3D Finite Element (FE) simulation is used to predict of three structural criteria that were selected and evaluated (deflection, stress, cracks). The results show that the failure of the strengthening columns is interesting and corresponds to the characteristics of the cracks formed in the concrete section,which was documented numerically using 3D Finite Element (FE). A significant improvement of deflection has been noted at the values at the top SECTION of columns compared to the reference sample reaching an average of up to 36.6% when using a 25 mm thick SCC-3500 jacket.

Local thin jacketing for the retrofitting of reinforced concrete columns

  • Yuce, Serkan Z.;Yuksel, Ercan;Bingol, Yilmaz;Taskin, Kivanc;Karadogan, H. Faruk
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.589-607
    • /
    • 2007
  • Two series of tests were conducted to investigate the behavior of local thin jacketing for the retrofitting of reinforced concrete (RC) columns. In the first series, four full-scale RC columns with a height of 400 cm and a 30 cm square cross-section were tested under constant axial load and reversed cyclic lateral displacements. The heavily damaged columns were retrofitted with local thin jacketing. Self-compacting concrete (SCC) was used in the production of 7.5 cm thick, four-sided jacketing. The height of the jacketing was 100 cm for one specimen and 200 cm for all others. In the second series, the retrofitted columns were retested with the same axial load and displacement history. The effectiveness of local thin jacketing in the retrofitting of RC columns was examined with respect to lateral strength, stiffness, inelastic load-deformation behavior and energy dissipation.