• Title/Summary/Keyword: SCALED 모델

Search Result 252, Processing Time 0.026 seconds

Analysis of Car-Pedestrian Collisions Using Scaled Korean Dummy Models (한국인 체형을 가진 보행자와 차량의 충돌 해석)

  • Shin, Dong-Han;Kim, Kwang-Hoon;Son, Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.110-117
    • /
    • 2007
  • According to the pedestrian protection regulations of Europe and Japan, the head injury must not exceed a limitation in the defined test condition for the protection of pedestrians from a vehicle crash. However, it is difficult to evaluate the performance of protection because each regulation has different test conditions such as dummy, impact speed and so on. This circumstance needs the development of a model that describes the anthropometry of the crash victim with a sufficient accuracy. We constructed scaled pedestrian dummies using MADYSCALE. Simulations were performed for various crash speeds and pedestrian postures. The scaled Korean dummies and HybridIII dummies were used to compare the pedestrian dynamic behaviors and head injury criteria during the collision. The HIC values of scaled korean dummies were found to be higher than those of Hybrid III dummies. The impact for gait posture was less than that for standing.

Effects of Turbulence Intensities on Wake Models of Horizontal Wind Turbines (난류 강도가 수평축 풍력발전기 후류 모델에 미치는 영향)

  • Lee, Seung-Ho;Jeong, Houi-Gab;Kwon, Soon-Duck
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.273-279
    • /
    • 2014
  • In this paper, wind tunnel tests of a scaled wind turbine have been performed to investigate the effects of turbulent intensity of oncoming flow on turbine wake field. The scaled turbine model was carefully designed to satisfy the similarity conditions. The wind velocities and turbulent intensities were measured using hotwire anemometer in order to compare with existing wake model. It was found from the tests that the existing wake models well fit with test results at turbulent flow rather than at uniform flow. Finally modified wake model has been proposed based on the measured data.

Failure Probability of Nonlinear SDOF System Subject to Scaled and Spectrum Matched Input Ground Motion Models (배율조정 및 스펙트럼 맞춤 입력지반운동 모델에 대한 비선형 단자유도 시스템의 파손확률)

  • Kim, Dong-Seok;Koh, Hyun-Moo;Choi, Chang-Yeol;Park, Won-Suk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 2008
  • In probabilistic seismic analysis of nonlinear structural system, dynamic analysis is performed to obtain the distribution of the response estimate using input ground motion time histories which correspond to a given seismic hazard level. This study investigates the differences in the distribution of the responses and the failure probability according to input ground motion models. Two types of input ground motion models are considered: real earthquake records scaled to specified intensity level and artificial input ground motion fitted to design response spectrum. Simulation results fir a nonlinear SDOF system demonstrate that the spectrum matched input ground motion produces larger failure probability than those of scaled input ground motion due to biased responses. Such tendency is more remarkable in the site of soft soil conditions. Analysis results show that such difference of failure probability is due to the conservative estimation of design response spectrum in the range of long period of ground motion.

Experimental Study of Steel Transmission Tower using Partially Scaled Model (송전철탑 부분축소모형의 실험적 연구)

  • Kim, Jong-Min;Kim, Seung-Jun;Park, Jong-Sup;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.335-344
    • /
    • 2010
  • This paper presents both of an investigation on the ultimate responses and a verification study on the structural methodology using beam-truss element of steel transmission towers using experimental study. The partially scaled tower which verified with analytical model was fabricated and the horizontal load was applied up to failure in the laboratory. The structural methodology for finite element analyses was verified against experimental results and both the ultimate load capacity and collapse mechanism were shown in the test to give sufficiently accurate results with those of analytical study. It was shown as well that the ultimate failure is primarily attributed to instability of the main posts in the leg parts.

Thermodynamic Modeling of Heat Loss and Quenching in a Down Scaled Combustor (형상 축소된 연소기의 열손실 및 소염해석 모델)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.919-926
    • /
    • 2002
  • Down scaled combustor undergoes increased heat loss that results in incomplete combustion or quenching of the flame as a consequence. Therefore, effect of enhanced heat loss should be understood to design a MEMS scale combustion devices. Existing combustion models are inadequate for micro combustors because they were developed for analysis of regular scale combustor where heat loss can be ignored during the flame propagation. In this research a combustion model is proposed in order to estimate the heat loss and predict quenching limit of flame in a down scaled combustor. Heat loss in the burned region is expressed in a convective form as a product of wall surface area, heat transfer coefficient and temperature difference. Comparison to the measurements showed satisfactory agreement of the pressure and temperature drop. Quenching is accounted for by introducing a correlation of quenching parameter and heat loss. The present model predicted burnt fraction of gases with reasonable accuracy and proved to be applicable in thermal design of a micro combustor.

Wind tunnel test for the 20% scaled down NREL wind turbine blade (NREL 풍력터빈 블레이드 20% 축소모델 풍동시험 결과)

  • Cho, Taehwan;Kim, Cheolwan;Kim, Yangwon;Rho, Joohyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.33.2-33.2
    • /
    • 2011
  • The 'NREL Phase VI' model with a 10.06m diameter was tested in the NASA Ames tunnel to make a reference data of the computational models. The test was conducted at the one rotational speed, blade tip speed 38m/s and the Reynolds number of the sectional airfoils in that test was around 1E6. The 1/5 scale down model of the 'NREL Phase VI' model was used in this paper to study the power characteristics in low Reynolds number region, 0.1E6 ~ 0.4E6 which is achievable range for the conventional wind tunnel facilities. The torque generated by the blade was directly measured by using the torque sensor installed in the rotating axis for a given wind speed and rotational speed. The power characteristics below the stall condition, lambda > 4, was presented in this paper. The power coefficient is very low in the condition below the Re. 0.2E6 and rapidly increases as the Re. increases. And it still increases but the variation is not so big in the condition above the Re. 0.3E6. This results shows that to study the performance of the wind turbine blade by using the scaled down model, the Re. should be larger than the 0.3E6.

  • PDF

2-D Dynamic analysis method of base-isolated pool structure (면진수조의 2차원 동적 해석기법 개발)

  • 전영선;최인걸;김진웅
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.67-74
    • /
    • 1995
  • This study develops 2-D analysis method of a base-isolated pool structure, and verifies the method through shaking table test using a scaled model. A wall of the pool structure is modeled as lumped mass, and added mass of the fluid is imposed on the nodes of the structure to consider the hydrodynamic effect of contained fluid. The equation of motion of base-isolated pool structure is obtained by coupling of two equations for superstructure composed of wall and fluid, and for bottom slab and isolator. The scaled model for shaking table test is made with transparent acryle, and 4-high damping laminated rubber bearings are used. The responses of the scaled model by the test are generally good agreement with those by the analysis. It is shown that 2-D analysis method gives somewhat conservative results.

  • PDF

A Study on Magnetic Signature Analysis Techniques of a Scaled Model Ship using Earth Magnetic Field Simulator (지구자기장 시뮬레이터를 이용한 모델 함정의 자기신호 분석 기법 연구)

  • Yang, Chang-Seob;Chung, Hyun-Ju;Jeon, Jae-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.465-472
    • /
    • 2013
  • Since 1990, Agency for Defense Development is operating the non-magnetic laboratory for the development of key technology for the underwater magnetic stealth part, the research of the magnetic application weapons and the technical support for Korean Navy. Recently, we installed the new three-axis earth magnetic field simulator and the measurement system in the non-magnetic laboratory which is replacing the existing outdated facility. In this paper, we deal with the detailed design result of the earth magnetic field simulator and the measurement system. Also, we describe the effective method to separate the permanent and the induced magnetic field from the measured data for a scaled model ship using the earth magnetic field simulator and the measurement system.

Analysis of Control Performance and Response of System using Scaled Model for SSSC (축소모델을 이용한 SSSC의 제어효과 및 계통응답 분석)

  • Choi, Jong-Yun;Hong, Soon-Wook;Jang, Byung-Hoon;Yoon, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.202-204
    • /
    • 2000
  • This paper describes the theory and experimental result of scaled model of SSSC. The SSSC, a solid-state voltage source inverter coupled with a transformer, is connected in series with a transmission line. Injected voltage is almost in quadrature with the line current, thereby emulating an inductive or a capacitive reactance in series with the transmission line.

  • PDF

A Running Stability Test of 1/5 Scaled Bogie using Small-Scaled Derailment Simulator (소형탈선시뮬레이터를 이용한 1/5 축소대차의 주행안정성 시험)

  • Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface optimization. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research using the small-scaled derailment simulator and the 1/5 scaled bogie has been conducted. In this paper, we did running stability test of 1/5 scaled bogie using small-scaled derailment simulator. Also, for the operation of the small scaled simulator, it is required to investigate the performance and characteristics of the simulator system. This could be achieved by a comparative study between an analysis and an experiment. This paper presented the analytical model which could be used for verifying the test results and understanding of the physical behavior of the dynamic system comprising the small- scaled derailment simulator and the 1/5 scaled bogie.