• Title/Summary/Keyword: SBR compound

Search Result 61, Processing Time 0.029 seconds

Influence of Microstructure and Extender Oil on Cure Characteristics of Solution SBR Compounds

  • Ko, Eunah;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.87-91
    • /
    • 2015
  • Cure characteristics of non-oil-extended solution SBR (S-SBR_NO) and oil-extended solution SBR (S-SBR_ EO) compounds reinforced with silica/carbon black were investigated. Minimum and maximum torques of S-SBR_ EO compounds were much smaller than those of S-SBR_NO ones. Delta torques of S-SBR_NO compounds were greater than those of S-SBR_EO ones, and that of S-SBR_NO compound increased with increase in the 1,2-unit content. Optimum cure time ($t_{90}$) of S-SBR compound decreased with increase in the 1,4-unit content, whereas it increased with increase in the 1,2-unit content. Cure rate index of S-SBR compound increased with increase in the 1,4-unit content, whereas it decreased with increase in the 1,2-unit content. Comparing cure characteristics of S-SBR_NO and S-SBR_EO compounds with the same 1,2-unit content, $t_{90}$s of S-SBR_EO compounds were longer than those of S-SBR_NO ones and cure rate indices of S-SBR_EO compounds were smaller than those of S-SBR_NO ones.

Bifunctional Silane (TESPD) Effects on Silica Containing Elastomer Compound Part II: Styrene-co-Butadiene Rubber (SBR) (양기능성실란(TESPD)이 실리카 함유 복합 소재에 미치는 영향 Part II: Styrene-co-Butadiene Rubber (SBR))

  • Jeon, Duk-Kyu;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.252-259
    • /
    • 2009
  • Bifunctional silane (TESPD) is added into silica filled SBR compound and its effects with respect to the vulcanization properties, the processability, and the physical properties are investigated. The addition of the TESPD into silica filled SBR compound increases the degree of crosslinking by formation of a strong 3-dimensional network structure with silica surface via coupling reaction, which results in an improved mechanical property. It also improves the processabilities compared to the Control compound.

Low Molecular Weight SBR Effect on Properties of Silica-Filled SBR Compounds (저분자량 SBR이 실리카로 보강된 SBR 배합물의 특성에 미치는 영향)

  • Park, Byung-Ho;Hong, Seong-Uk;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.38 no.1
    • /
    • pp.65-71
    • /
    • 2003
  • Influence of low molecular weight styrene-butadiene rubber (liquid SBR) on properties of a silica-filled styrene-butadiene rubber (SBR) compounds was studied. Viscosity of the silica-filled SBR compound decreased by adding the liquid SBR. The crosslink density decreased and the cure rate became slower as the liquid SBR content increased. The modulus and tensile strength decreased while the elongation at break became longer by increasing the liquid SBR content. The abrasion losses were nearly the same irrespective of the liquid SBR content. This might be due to the improvement of silica dispersion by adding the liquid SBR. Considering the experimental results, it was believed that addition of small amount of the liquid SBR (less than 5 phr) was desirable to improve properties of silica-filled SBR compounds.

Influence of Molecular Size of Liquid BR on Properties of Silica-Filled SBR Compounds (액상 BR의 분자 크기가 실리카로 보강된 SBR 배합물의 특성에 미치는 영향)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.36 no.3
    • /
    • pp.162-168
    • /
    • 2001
  • Low molecular weight polybutadiene (liquid BR) improves the filler dispersion in a silica-filled styrene-butadiene rubber (SBR) compound. In the present work, influence of molecular weight or the liquid BR on properties of a silica-filled SBR compound was studied. Minimum and maximum torques in the rheocurve for the compound containing the liquid BR with higher molecular weight (HLBR) are lower than those for the compound containing the liquid BR with lower one (LLBR) while the delta torques are nearly the same. Mooney scorch time of the compound containing HLBR is faster than that of the compound containing LLBR. Modulus or the compound containing HLBR is lower than that of the compound containing LLBR while tensile strength of the former is higher than that of the latter. The elongation at break of the former is also longer than that of the latter. Stability for the thermal aging at $90^{\circ}C$ for 3 days is less favorable for the former than for the latter.

  • PDF

Comparison of SBR/BR Blend Compound and ESBR Copolymer Having Same Butadiene Contents

  • Hwang, Kiwon;Lee, Jongyeop;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • The rapid development of the automobile industry is an important factor that led to the dramatic development of synthetic rubber. The tread part of tire that comes in direct contact with the road surface is related to the service life of the tire. Rubber compounds used in tire treads are often blended with SBR (styrene-butadiene rubber) and BR (butadiene rubber) to satisfy physical property requirements. However, when two or more kinds of rubber are blended, phase separation and silica dispersion problems may occur due to non-uniform mixing of the rubber. Therefore, in this study, we synthesized an SBR copolymer with the same composition as that of a typical SBR/BR blend compound by controlling butadiene content during ESBR (emulsion styrene-butadiene rubber) synthesis. Subsequently, silica filled compounds were manufactured using the synthesized ESBR, and their mechanical properties, dynamic viscoelasticity, and crosslinking density were compared with those of the SBR/BR blended compound. When the content of butadiene was increased in the silica filled compound, the cure rate accelerated due to an increased number of allylic positions, which typically exhibit higher reactivity. However, the T-2 compound with increased butadiene content by synthesis less likely to show an increase in crosslink density due to poor silica dispersion. In addition, the T-3 compound containing high cis BR content showed high crosslink density due to its monosulfide crosslinking structure. Because of the phase separation, SBR/BR blend compounds were easily broken and showed similar $M_{100%}$ and $M_{300%}$ values as those of other compounds despite their high crosslink density. However, the developed blend showed excellent abrasion resistance due to the high cis-1,4 butadiene content and low rolling resistance due to the high crosslink density.

Effect of Acrylonitrile-Butadiene Rubber on the Properties of Silica-Filled Styrene-Butadiene Rubber Compounds: Reduction of Silane Coupling Agent and Diphenylguanidine (실리카로 보강된 SBR 배합물의 특성에 미치는 NBR 효과: 실란커플링제와 DPG의 사용량 감소)

  • Choi, Sung-Seen;Chang, Dong-Ho;Kim, Ik-Sik
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.217-223
    • /
    • 2002
  • Silica-filled rubber compounds show poor filler dispersion and slow cure characteristics compared to carbon black-filled ones. In general, a silica-filled rubber compound contains silane coupling agent (bis-(3-(triethoxysilyl)-propyl)-tetrasulfide, TESPT) and diphenylguanidine (DPG) to improve the filler dispersion and to make fast cure characteristics. Acrylonitrile-butadiene rubber (NBR) improves the filler dispersion in silica-filled styrene-butadiene rubber (SBR) compounds. In this study, effect of NBR on the properties of silica-filled SBR compounds was investigated. Properties of the compounds which contain NBR without DPG or with small amount of TESPT (Compound A) were compared with those of the compounds which contain TESPT and DPG without NBR (Compound B). Scorch time of Compound A is faster than those of Compound B. Modulus and tensile strength of Comound A are slightly lower than those of Compound B. Traction property of the Comound A is better than that of the Compound B. Addition of NBR leads to reduction of the used amount of TESPT and DPG.

Influence of Dicyclopentadiene Resin on Abrasion Behavior of Silica-Filled SBR Compounds Using Different Abrasion Testers

  • Eunji Chae;Seong Ryong Yang;Seok Hyun Cho;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.103-111
    • /
    • 2023
  • The abrasion resistances of silica-filled styrene-butadiene rubber (SBR) compounds prepared with and without dicyclopentadiene resin (SBR-R and SBR-0, respectively) were studied using four different abrasion testers, namely cut and chip (CC), Lambourn, DIN, and laboratory abrasion tester (LAT100). The effect of the resin on the abrasion behavior was elucidated by analyzing the morphologies and size distributions of wear particles. All the wear particles had rough surfaces, but those obtained in the Lambourn abrasion test exhibited relatively smooth surfaces. The size distributions of the wear particles showed different trends depending on the abrasion tester and the rubber compound; however, most of the wear particles were larger than 1000 ㎛. The SBR-R sample showed a wide range of particle sizes (from 63 ㎛) in the LAT100 abrasion test and majority of the wear particles were 500-1000 ㎛, whereas the SBR-0 sample had the most distribution of larger than 1000 ㎛. The abrasion rates of SBR-0 sample were lower than those of the SBR-R sample for the CC and LAT100 abrasion tests, but the Lambourn abrasion test result showed the opposite trend. Addition of the resin influenced the abrasion behavior, however the effect varied depending on the type of abrasion tests.

Improvement of the Filler Dispersion in Silica-Filled SBR Compounds Using Low Molecular Weight Polybutadiene Treated with Maleic Anhydride (Maleic Anhydride로 처리된 저분자량 폴리부타디엔을 이용한 실리카로 보강된 SBR 배합물에서 충전제 분산성 항상)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • Influence of low molecular weight polybutadiene (liquid PB) treated with maleic anhydride on properties of a silica-filled SBR compounds was studied. Silica dispersion was improved by adding liquid PB. The liquid PB treated with maleic anhydride (liquid MAPB) was found to be more effective for the improvement of silica dispersion than the liquid PB without maleic anhydride (liquid NPB). Viscosity of the SBR compound decreased by adding the liquid PB. The crosslink density decreased with increase of the liquid PB content and the cure rate became slower with increasing the liquid PB content. Considering the experimental results, it was believed that addition of small amount of the liquid PB (less than 5 phr) was desirable to improve properties of silica-filled SBR compounds.

Zinc Surfactant Effects on Nr/Tespd/Silica and SBR/Tespd/Silica Compounds

  • Kim, Kwang-Jea;Vanderkooi, John
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.263-273
    • /
    • 2004
  • The effects of zinc surfactant (ZB) on the bis(triethoxysilylpropyl)disulfide (TESPD)-silica mixture in natural rubber (NR) and solution butadiene-co-styrene rubber(S-SBR) were compared with respect to their rheological property, processability, physical properties, and silica dispersion. In the NR compound, addition of the ZB increased the reversion resistance time (T-2), the tensile modulus, and the BO time; however, lowered the viscosity, the HBU, and tans values. In the S-SBR copound, addition of the ZB increased the $tan{\delta}$ values while lowered the T-2, the tensile modulus the BO time, the viscosity, and the HBU of the compound. In the NR compounds, addition of the ZB significantly increased the processability and mechanical property. However, in the S-SBR compounds, it improved the processability the mechanical property was not improved.

Mechanical Properties of Acrylonitrile Functionalized Emulsion SBR/silica Compounds (아크릴로니트릴이 극성기로 도입된 유화중합 SBR/실리카 컴파운드의 기계적 물성)

  • Kim, Dong-Won;Seo, Byeong-Ho;Kim, Hee-Jeong;Paik, Hyun-Jong;Kang, Jong-Won;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.54-64
    • /
    • 2012
  • Acrylonitrile was introduced in the emulsion SBR to increase compatibility between silica and rubber. AN-SBR/silica compounds showed faster vulcanization time and higher delta torque values than SBR 1721/silica compounds because interaction between nitrile group of AN-SBR and silanol group on the silica surface could make hydrogen bond that prevented adsorption of the accelerator on the silica surface, which improved the vulcanization reaction efficiency and enhanced the degree of crosslinking. AN-SBR/silica compound showed higher values in minimum torque than SBR 1721/silica compound during the vulcanization because AN-SBR has higher molecular weight than SBR 1721 in the raw material. When PEG was added to the SBR 1721 and AN-SBR compounds, vulcanization time was faster than SBR 1721 and AN-SBR compounds without PEG because PEG has a large number of ether linkages which show high compatibility with silanol group on the silica surface that prevented the adsorption of the accelerator and the ingredients on the silica surface, which improved the vulcanization reaction efficiency. In the mechanical properties, AN-SBR compounds showed higher modulus values at 100%, 300% than SBR 1721 compounds because interaction between nitrile group of AN-SBR and silanol group on the silica surface enhanced the degree of crosslinking. In the dynamic properties, AN-SBR compounds showed lower tan ${\delta}$ values at $0^{\circ}C$ than SBR 1721 compounds in accordance with the $T_g$ values. AN-SBR compounds showed lower tan ${\delta}$ values at $60^{\circ}C$ than SBR 1721 compounds because interaction between acrylonitrile and silica caused strong filler-rubber interaction that induced low energy dissipation by the filler-filler interaction.