• Title/Summary/Keyword: SBR blend

Search Result 28, Processing Time 0.022 seconds

Building Calibration Curve for Py-GC/MS Analysis of SBR/BR Blend Rubber Compounds

  • Chae, Eunji;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.281-288
    • /
    • 2020
  • A calibration curve is needed to determine the SBR and BR blend ratio of SBR/BR blend rubber compounds using pyrolysis-gas chromatography/mass chromatography (Py-GC/MS) or Py-GC. In general, a calibration curve is obtained using reference SBR/BR vulcanizates with various blend ratios. In this study, the calibration curves were obtained using reference samples made of rubber solutions and were compared to those plotted using the reference SBR/BR vulcanizates. Calibration curves using variations of 1,3-butadiene/styrene, 4-vinylcyclohexene (VCH)/styrene, 2-phenylpropene (PhP)/butadiene, PhP/VCH, 4-phenylcyclohexene (PhCH)/butadiene, and PhCH/VCH ratios with the BR content were examined for the suitability. We found that the calibration curves obtained using the mixed rubber solution references (1,3-butadiene/styrene and PhP/butadiene) could replace those constructed using the reference SBR/BR vulcanizates. The calibration curves of 1,3-butadiene/styrene and PhP/butadiene obtained using the raw references can be used for the determination of the SBR/BR blend ratios by applying some correction factors.

Studies on the Physical Properties of Synthetic Rubber Blends Containing Rein-forcing Fillers (보강성 충전제를 함유한 합성고무 블렌드의 물리적 특성에 관한 연구)

  • Go, Jin-Hwan;Lee, Seog
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.231-237
    • /
    • 1998
  • In order to investigate the physical properties of rubber blend compound, this experiment was carried out on the cure rate, loss tangent, reinforcement and abrasion properties of S-SBR (solution styrene-butadiene rubber) blends containing silane coupled silica and E-SBR (emulsion styrene-butadiene rubber) blends containing carbon black as a model compound. E-SBR blend showed the highest total bound rubber(TBR), while S-SBR blends showed constant TBR level regardless of rubber type. Rapid cure rate was achieved when the styrene and vinyl content of rubber microstructure decreased and TBR content of rubber compounds increased. The modulus as the index of rubber reinforcement showed the linear relation with TBR content. The large amount of PICO loss was observed when the styrene and vinyl content of rubber microstructure increased, while the small amount of PICO loss was observed when the ratio of bu-tadiene increased in the S-SBR blends with silane copuled silica. The high loss tangent at $0^{\circ}C$, the low loss tangent at $60^{\circ}C$, and the large difference of loss tangent were shown in the S-SBR blends with high styrene content compared to E-SBR blend.

  • PDF

Cure characteristics, Mechanical Properties and Ozone Resistance of EPDM/SBR Blend Vulcanizates (EPDM/SBR 블렌드 가황체의 경화특성, 기계적 성질 및 내오존성)

  • Park, Chan-Young
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.104-112
    • /
    • 2008
  • The ethylene propylene diene terpolymer (EPDM) blends with styrene butadiene rubber (SBR) were prepared from an open 2-roll mill following the conventional rubber blend method, and then cure characteristics, mechanical properties and ozone resistance were subsequently examined. With incorporation of SBR the torque value of the EPDM and SBR blends showed a gradual increase in the cure curve. The maximum torque value was obtained with lowest level at 25wt% of SBR and it was increased linearly with more than 25wt%. As the SBR loading increased scorch time and optimum cure time decreased. Hardness represented a maximum at 50wt% of SBR. However upper and lower than that value it decreased. It was found that the unfavorable characteristics of ozone resistance of pure SBR was significantly improved through the blending of SBR with EPDM.

Studies on the Ozone Resistance and Physical Properties of SBR/EPDM Blend Compound due to EPDM Content Variation (EPDM 함량 변화에 따른 SBR/EPDM 블렌드 혼합물의 내오존성과 물리적 성질에 관한 연구)

  • Ha, Ki-Ryong;Lee, Jong-Cheol;Kim, Tae-Geun;Hwang, Ki-Seob
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.8-17
    • /
    • 2008
  • Styrene-butadiene rubber(SBR) has good abrasion resistance, miscibility, and anti-vibration property. however, it is easily damaged by ozone and swelled by hydrocarbon fluids because of unsaturation part in main chain, that causes loss of visco-elasticity and reduction of product's life cycle. Therefore, object of this study is to cope with this problem. SBR is blended with various proportion of ethylene-propylene-diene terpolymer(EPDM), which has excellent ozone and oxygen resistance, to improve physical properties and ozone resistance, and diverse analytical techniques are used to measure morphology, glass transition temperature$(T_g)$, ozone-resistance, degradation temperature, static spring constant, hardness for considering a suitability for anti-vibration industrial product. We found that the blend consisting of SBR 70% and EPDM 30% showed no crack after ozone test and good miscibility between SBR and EPDM from this study.

Comparison of SBR/BR Blend Compound and ESBR Copolymer Having Same Butadiene Contents

  • Hwang, Kiwon;Lee, Jongyeop;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • The rapid development of the automobile industry is an important factor that led to the dramatic development of synthetic rubber. The tread part of tire that comes in direct contact with the road surface is related to the service life of the tire. Rubber compounds used in tire treads are often blended with SBR (styrene-butadiene rubber) and BR (butadiene rubber) to satisfy physical property requirements. However, when two or more kinds of rubber are blended, phase separation and silica dispersion problems may occur due to non-uniform mixing of the rubber. Therefore, in this study, we synthesized an SBR copolymer with the same composition as that of a typical SBR/BR blend compound by controlling butadiene content during ESBR (emulsion styrene-butadiene rubber) synthesis. Subsequently, silica filled compounds were manufactured using the synthesized ESBR, and their mechanical properties, dynamic viscoelasticity, and crosslinking density were compared with those of the SBR/BR blended compound. When the content of butadiene was increased in the silica filled compound, the cure rate accelerated due to an increased number of allylic positions, which typically exhibit higher reactivity. However, the T-2 compound with increased butadiene content by synthesis less likely to show an increase in crosslink density due to poor silica dispersion. In addition, the T-3 compound containing high cis BR content showed high crosslink density due to its monosulfide crosslinking structure. Because of the phase separation, SBR/BR blend compounds were easily broken and showed similar $M_{100%}$ and $M_{300%}$ values as those of other compounds despite their high crosslink density. However, the developed blend showed excellent abrasion resistance due to the high cis-1,4 butadiene content and low rolling resistance due to the high crosslink density.

Studies on the Physical Properties and Application of EPDM-Polymer Blends. Part 6. Physical Properties for EPDM-NR-SBR Blends (EPDM과 각종(各種) Polymer의 Blend에 의(依)한 성능변화(性能變化) 및 그 응용(應用)에 관(關)한 연구(硏究)(제6보(第6報)) EPDM과 Natural Rubber 및 Butadiene-Styrene Rubber의 Blend에 대(對)하여)

  • Kim, Joon-Soo
    • Elastomers and Composites
    • /
    • v.7 no.2
    • /
    • pp.183-192
    • /
    • 1972
  • As a series of tile studies of EPDM-Polymer blends, tile experiment are concentrated to the investigation of the physical properties of tile EPDM-NR-SBR blends. The results are shown as follows: 1. In blending, tensile strength decreased with increase in EPDM contents, especially the ratio of EPDM/NR-SBR is 75/25. 2. Elongation and tear strength were much influenced by blending, especially the ratio of EPDM/NR-SBR is 50/50. 3. Ozone resistance is much improved after blending. It was effective more than tile ratio of EPDM/NR-SBR is 25/75. 4. Aging resistance is much improved after blending. It was effective more than the ratio of EPDM/NR-SBR is 50/50. 5. Hardness increased with increase in EPDM contents and on the other hand, abrasion resistance decreased.

  • PDF

Mechanical Degradation of Polystyrene by Mastication (Mastication에 의한 Polystyrene의 機械的分裂)

  • Ki Hyun Chung;Chwa Kyung Sung
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.298-305
    • /
    • 1973
  • Following results were obtained for the mechanical degradation of polystyrene (for polystyrene itself and when blended with rubber) by roll mastication. 1) The rate of mechanical degradation for polystyrene itself can be represented by the second-order rate equation proposed by Goto. $-\frac{dP_t}{dt} = k_s(P_t-P_{\infty})^2$ Where Pt is the degree of polymerization of the degraded polymer at t minutes and $P{\infty}$ is the final degree of polymerization. 2) The mechanical degradation of polystyrene component in the polystyrene-rubber (SBR, BR) blend system occurred similarly as that of polystyrene itself. 3) Under the experimental conditions the mechanical degradation rate of the polystyrene component of the polystyrene-rubber, (SBR, BR) blend system followed approximately the same second-order equation as that for polystyrene itself.

  • PDF

Studies on it's practical Application to Auto Pneumatic tyre and Manufacture of CBR (Part 1.) On the Blend of CBR and SBR (CBR의 제조(製造) 및 이를 자동차(自動車) tyre에 활용(活用)하는데 관(關)한 연구(硏究)(제1보(第一報)) CBR와 SBR의 Blend에 관(關)하여)

  • Lee, Hyan-O;Lee, Young-Kil
    • Elastomers and Composites
    • /
    • v.6 no.1
    • /
    • pp.53-70
    • /
    • 1971
  • We have studied the blending effects of cis-1,4-polybutadiene (CBR) and styrene-tutadiene rubber at various blending ratios of 100 : 0, 70 30, 50 : 50, 30 : 70, 0 : 100, and of carbon black ISAF and HAP at various compounding ratios of 45 PHR, 55 PHR, 65 PHR, for tyre tread rubber. The results obtained are summerized as follows; 1. For tyre tread rubber, it was found to increased efficiency to use SBR polymer only than to use the blending ratio CB/SBR=30/70 below. But it was observed that the latter was adapted for the bus or truck tyre and the former for the passenger tyre. 2. Excellent efficiency was obtained in case of carbon black compounding ratio of 55%, and also the compounding of ISAF made better efficiency than that of HAF. 3. Carbon black was more efficient to SBR than to CB. 4. For the aging ratio, the compounding rubber of NR was the highest, and the ratio was decreased in order of the compounding rubber of oil-extended SBR or CB polymer only, the compounding rubber of non oil-extended SBR or CB polymer only, and the blending rubber.

  • PDF

Microstructural Analysis of SBR Blends Using Infrared Spectroscopy (적외선 분광법을 이용한 SBR 혼합물의 미세구조 분석)

  • Kim, Yeowool;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.103-109
    • /
    • 2014
  • Blends of emulsion SBR (E-SBR) and solution SBR (S-SBR) were prepared, and their microstructures (styrene, 1,2-unit, cis-1,4-unit, and trans-1,4-unit contents) were analyzed by Fourier transform infrared spectroscopy (FTIR) with transmittance mode. Method to measure absorbance by valley-to-valley baseline (TV) is objectively reasonable, but has a demerit which peak intensity of the cis-1,4-unit cannot be correctly measured. In order to obtain information for the four microstructures including cis-1,4-unit, measurement methods without correction (TM) and correction to 99% transmittance (TB) were compared to the TV method. Results obtained by the TB method were closer to those obtained by the TV one than those obtained by the TM. The microstructures were determined from the absorbances obtained by the TM and TB methods according to the ISO/FDIS 21561:2005(E). Variations of the styrene, 1,2-unit, and trans-1,4-unit contents with the blend ratio of E-SBR/S-SBR showed relatively good linearities, and there was no big difference between results obtained by the TM and TB methods. Variations of the cis-1,4-unit content with the blend ratio absolutely did not show linearities irrespective of the TM and TB methods.

Effect of Environmental Factors on the Properties of Polymeric Material(II) : Temperature and Ozone Exposure Time (고분자재료의 물성에 미치는 환경인자의 영향(II) : 온도 및 오존 노출시간)

  • 박찬영;박성수;민성기
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.73-77
    • /
    • 2001
  • This study examined blends of styrene butadiene rubber(SBR) and chloroprene rubber(CR) prepared from an open 2-roll mill following the conventional polymer blend method for a wide range of the blend composition. Rubber vulcanizates were manufactured by hot press and then mechanical properties, heat and ozone resistance of the specimens were examined. Due to the post cure during the aging test, hardness of vulcanizates was increased. It was found that the undesirable characteristics of heat and ozone resistance of pure SBR was significantly improved through the blending of SBR with CR.

  • PDF