• Title/Summary/Keyword: SBR/BR blend

Search Result 10, Processing Time 0.018 seconds

Building Calibration Curve for Py-GC/MS Analysis of SBR/BR Blend Rubber Compounds

  • Chae, Eunji;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.281-288
    • /
    • 2020
  • A calibration curve is needed to determine the SBR and BR blend ratio of SBR/BR blend rubber compounds using pyrolysis-gas chromatography/mass chromatography (Py-GC/MS) or Py-GC. In general, a calibration curve is obtained using reference SBR/BR vulcanizates with various blend ratios. In this study, the calibration curves were obtained using reference samples made of rubber solutions and were compared to those plotted using the reference SBR/BR vulcanizates. Calibration curves using variations of 1,3-butadiene/styrene, 4-vinylcyclohexene (VCH)/styrene, 2-phenylpropene (PhP)/butadiene, PhP/VCH, 4-phenylcyclohexene (PhCH)/butadiene, and PhCH/VCH ratios with the BR content were examined for the suitability. We found that the calibration curves obtained using the mixed rubber solution references (1,3-butadiene/styrene and PhP/butadiene) could replace those constructed using the reference SBR/BR vulcanizates. The calibration curves of 1,3-butadiene/styrene and PhP/butadiene obtained using the raw references can be used for the determination of the SBR/BR blend ratios by applying some correction factors.

Comparison of SBR/BR Blend Compound and ESBR Copolymer Having Same Butadiene Contents

  • Hwang, Kiwon;Lee, Jongyeop;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • The rapid development of the automobile industry is an important factor that led to the dramatic development of synthetic rubber. The tread part of tire that comes in direct contact with the road surface is related to the service life of the tire. Rubber compounds used in tire treads are often blended with SBR (styrene-butadiene rubber) and BR (butadiene rubber) to satisfy physical property requirements. However, when two or more kinds of rubber are blended, phase separation and silica dispersion problems may occur due to non-uniform mixing of the rubber. Therefore, in this study, we synthesized an SBR copolymer with the same composition as that of a typical SBR/BR blend compound by controlling butadiene content during ESBR (emulsion styrene-butadiene rubber) synthesis. Subsequently, silica filled compounds were manufactured using the synthesized ESBR, and their mechanical properties, dynamic viscoelasticity, and crosslinking density were compared with those of the SBR/BR blended compound. When the content of butadiene was increased in the silica filled compound, the cure rate accelerated due to an increased number of allylic positions, which typically exhibit higher reactivity. However, the T-2 compound with increased butadiene content by synthesis less likely to show an increase in crosslink density due to poor silica dispersion. In addition, the T-3 compound containing high cis BR content showed high crosslink density due to its monosulfide crosslinking structure. Because of the phase separation, SBR/BR blend compounds were easily broken and showed similar $M_{100%}$ and $M_{300%}$ values as those of other compounds despite their high crosslink density. However, the developed blend showed excellent abrasion resistance due to the high cis-1,4 butadiene content and low rolling resistance due to the high crosslink density.

Mechanical Degradation of Polystyrene by Mastication (Mastication에 의한 Polystyrene의 機械的分裂)

  • Ki Hyun Chung;Chwa Kyung Sung
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.298-305
    • /
    • 1973
  • Following results were obtained for the mechanical degradation of polystyrene (for polystyrene itself and when blended with rubber) by roll mastication. 1) The rate of mechanical degradation for polystyrene itself can be represented by the second-order rate equation proposed by Goto. $-\frac{dP_t}{dt} = k_s(P_t-P_{\infty})^2$ Where Pt is the degree of polymerization of the degraded polymer at t minutes and $P{\infty}$ is the final degree of polymerization. 2) The mechanical degradation of polystyrene component in the polystyrene-rubber (SBR, BR) blend system occurred similarly as that of polystyrene itself. 3) Under the experimental conditions the mechanical degradation rate of the polystyrene component of the polystyrene-rubber, (SBR, BR) blend system followed approximately the same second-order equation as that for polystyrene itself.

  • PDF

Study on Analysis of Vulcanized Rubber by Pyrolysis-Gas Chromatography(I) (Vulcanizates of NR BR and SBR) (Pyrolysis-Gas Chromatography를 이용한 가황 고무의 열분석에 관한연구(I) (NR, BR 및 SBR의 가황체))

  • Huh, D.S.;Kim, J.S.;Kim, K.J.;Ahn, B.K.;Suh, S.K.;Han, O.K.
    • Elastomers and Composites
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 1987
  • A coil pyrolyzer and processor-controlled gas chromatograph were used for analysis of rubber for compounding ratio of the single and blend rubber vlucanizates. Variables such as sample size, pyrolysis temperature, time allowed for pyrolysis, the column packing material, its length and programmable temperature for gas chromatography were examined to obtain optimum condition for application to NR, BR and SBR blends. By application fixed conditions, three kinds of standard curves were finally obtained from thirty samples of blend vulcanizates which were prepared in the pilot plant, NIRI. It is possible to determine rubber composition and their ratio in NR, BR and SBR products by pyrolysis.

  • PDF

Covulcanization and Ozone resistance for Unsaturated and Saturated Rubbers (불포화 고무와 포화 고무의 공가류 및 내오존성)

  • Lim, Won-Woo;Jung, Il-Taek;Han, Min-Hyun
    • Journal of Adhesion and Interface
    • /
    • v.2 no.4
    • /
    • pp.32-38
    • /
    • 2001
  • Effects of the ratio of rubber composition on covulcanization and ozone resistance were studied in this study. Specimens used in this study were rubber compounds(specimen-A) blended with various ratio of NR, SBR, BR, IIR, and EPDM, unsaturated rubber compounds(specimen-B) with NR/BR/SBR, and saturated rubber compounds(specimen-C) with NR/IIR/EPDM. PAD adhesion specimen was prepared from vulcanizing specimen-A and B, and specimen-A and C, respectively. Using same adhesion specimen, peel strength was measured and tested ozone resistance. In specimen-A, peel strength was higher with increasing NR ratio for NR and BR contained blends. In other specimen-A containing NR and SBR, the peel strength was also increased with increasing SBR ratio. NR/BR/IIR/EPDM rubber compounds had also better adhesion property than NR/SBR/IIR/EPDM compounds. As more unsaturated rubber was blended, the peel strength was higher but ozone resistance was worse. Optimum ratio of unsaturated and saturated rubbers for the peel strength and ozone resistance was 60/40.

  • PDF

Evaluation of BR Blending Methods for ESBR/silica Wet Masterbatch Compounds

  • Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.242-248
    • /
    • 2017
  • Wet masterbatch (WMB) technology is studied to develop high-content and highly disperse silica-filled compounds. This technology refers to the solidification of surface-modified silica with a rubber solution or latex. Until now, researchs based on styrene butadiene rubber (SBR)/silica WMB has been mainly performed. However, the blending of SBR/silica WMB and BR is not known and is currently under research and development. Therefore, in this study, the BR blending method suitable for emulsion (ESBR)/silica WMB is investigated by measuring their cure characteristics and the mechanical and dynamic viscoelastic properties. As a result, it was confirmed that the blending of ESBR/silica WMB and BR/silica dry masterbatch is most appropriate. However, it showed a disadvantage compared with the conventional mixing method, which was due to the surfactant remained and the sulfuric acid used as the coagulant.

A Study on the Vulcanization Characteristics of SBR/BR Blends Containing Reinforcing Fillers (보강성 충전제가 첨가된 SBR/BR 블렌드의 가황특성에 관한 연구)

  • Lee, Seag
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.274-280
    • /
    • 1998
  • Order of reaction, rate constant, activation energy for vulcanization reaction, crosslinking density, and elastic constant of the network produced by sulfur curing were investigated on the SBR/BR blends containing silica and carbon black under same cure system. The reaction order was shown to be first order regardless of filler types. The carbon black filled rubber compounds showed higher rate constant compared to silica filled compounds. But activation energy appeared to be same regardless of filler type and rubber blend ratio. The crosslinking density and elastic constant is higher in the carbon black filled compound compared to silica filled compounds because of strong interaction between rubber and carbon black. On the other hand, crosslinking density and elastic constant were decreased with increasing the butadine rubber content in rubber blends. From the comparison of combined sulfur content in the vulcanized rubber, sulfur content in the silica filled compound become constant 20min later after reaction initiates but sulfur content in the carbon black filled compound become constant 10min later after reaction starts. The silica compound has a longer induction time ($t_2$) and optimum cure time($t_{90}$) compared to those of the carbon black filled compound.

  • PDF

Studies on the Improvement of Quality for Soles and Heels of Shoes (군화창 및 구두창의 품질향상에 관한 연구)

  • Huh, Dong-Sub;Choi, Choon-Chuel;Kim, Chong-Suk
    • Elastomers and Composites
    • /
    • v.8 no.2
    • /
    • pp.148-152
    • /
    • 1973
  • A study of preparing rubber soles and heels was made to improve the quality in their physical properties such as resistance of cut-growth, abrasion resistance and tensile strength. Following results were obtained in the characteristics of rubber compounding: 1. In the reinforcement effect of fillers, it was found that hydrous silcate and carbon black were the best, aluminum and calcium silicate were pretty good, and basic magnesium carbonate was moderate. 2. SBR/BR blend in the ratio of from 85/25 to 100/0 and NBR/BR blend in the ratio of from 60/40 to 20/80 were the most suitable compounding condition.

  • PDF

Improvement of Abrasion Resistance and Friction of Rubber Blend Composition

  • Lee, Jong-Hwan;Lee, Jieun;Han, Tak Jin;Jeong, Hye Min
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.161-166
    • /
    • 2020
  • On the basis of the use of shoes, the outsole, which is mainly made of rubber, has various characteristics. The most important of these characteristics is abrasion resistance and friction. Generally, the abrasion resistance can be improved by adding more reinforcing filler such as silica to the rubber; however, the friction force drops. Owing to these problems, rubber having excellent abrasion resistance and rubber having excellent frictional force are blended. In this study, various characteristics, including wear resistance and friction, were evaluated by blending NBR/SBR or NBR/BR mixture with high wear resistance and CIIR with high friction. The CIIR was increased up to 60 phr, whereas the friction wear characteristics were rapidly changed in the NBR/CIIR blend ratio from 75:15 to 60:30.

Studies on analysis of Rubber Vulcanizates by Pyrolysis-Gas Chromatography (II) (NBR, CR, and EPDM Vulcanizates) (Pyrolysis-Gas Chromatography를 이용한 가황 고무의 열분석에 관한 연구(II) (NBR, CR 및 EPDM 가황체))

  • Huh, D.S.;Kim, J.S.;Kim, K.J.;Ahn, B.K.;Suh, S.K.
    • Elastomers and Composites
    • /
    • v.22 no.4
    • /
    • pp.314-323
    • /
    • 1987
  • A blend ratio of rubber vulcanzates comprising NBR, CR, EPDM, NR, BR, and SBR alone or blended is determind through a P.G.C. It is found that a characteristic peak of elastomer is proportional to the content of each elastomer when they are pyrolysed. It is also classified to the different AN content in NBR vulcanizates, identification of sulfur-modified and non-sulfur bearing CR polymers, and the content of ethylene, propylene monomer and the third monomer in EPDM vulcanizetes.

  • PDF