• Title/Summary/Keyword: SBF solution

Search Result 44, Processing Time 0.026 seconds

In vitro biocompatibility of a cement compositecontaining poly ($\varepsilon$-caprolactonemicrosphere) (PCL)

  • Jyoti, Md. Anirban;Min, Young-Ki;Lee, Byong-Taek;Song, Ho-Yeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.42.1-42.1
    • /
    • 2009
  • In recent years, it has been tried to develop the efficacy and bioactivity of Calcium Phosphate cements(CPC) as injectable bone substitute (IBS) by reinforcing them through varying the amount in its compositions and relative concentrations or adding other additives. In this study, the biocompatibility of are inforced Calcium Phosphate-Calcium Sulfate injectable bone substitute (IBS)containing poly ($\varepsilon$-caprolactone)PCL microspheres was evaluated which consisted of solution chitosan and Na-citrate as liquid phase and tetra calcium phosphate (TTCP), dicalciumphosphate anhydrous (DCPA) powder as the solid phase. The in vitrobiocompatibility of the IBS was done using MTT assay and Cellular adhesion and spreading studies. The in vitro experiments with simulated body fluid (SBF) confirmed the formation of apatite on sample surface after 7 and 14 days of incubation in SBF. SEM images for one cell morphologies showed that the cellular attachment was good. MG-63 cells were found to maintain their phenotype on samples and SEM micrograph confirmed that cellular attachment was well. In vitro cytotoxicity tests by an extract dilution method showed that the IBS was cytocompatible for fibroblast L-929.

  • PDF

Nanostructural Study of Apatite Film Biomimetically Grown in SBF (Simulated Body Fluid) (생체유사환경에서 성장된 아파타이트 층의 나노구조 연구)

  • Kim, Joung;Lee, Kap-Ho;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.690-696
    • /
    • 2005
  • The ultrastructure ore of a nanostructured apatite film nucleated from solution was studied to gain insights into that of bone minerals which is the most important constituent to sustain the strength of bones. Needle-shaped apatite crystal plates with a bimodal size distribution $(\~100\;to\;\~1000 nm)$ were randomly distributed and they were found to grow parallel to the c-axis ([002]), driven by the reduction of surface energy. Between these randomly distributed needle-shaped apatite crystals which are parallel to the film, apatite crystals (20-40nm) with the normal of the grains quasi-perpendicular to the c-axis were observed. These observations suggest that the apatite film is the interwoven structure of apatite crystals with the c-axis parallel and quasi-perpendicular to the fan. In some regions, amorphous calcium phosphate, which is a precursor of apatite, was also observed. In the amorphous phase, small crystalline particle with the size of 2-3 nm were observed. These particles were quite similar, in size and shape, to those observed in the femoral trabecular bone, suggesting the nucleation of apatites by a biomimetic process in vitro is similar to that in vivo.

Synthesis and characterization of silicon ion substituted biphasic calcium phosphate (실리콘 이온이 첨가된 biphasic calcium phosphate의 합성 및 특성평가)

  • Song, Chang-Weon;Kim, Tae-Wan;Kim, Dong-Hyun;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.243-248
    • /
    • 2010
  • Si-substituted biphasic calcium phosphates (Si-BCP) were prepared by co-precipitation method. X-ray diffraction and fourier transform infrared spectroscopy were used to characterize the structure of Si-BCP powders. The Si-BCP powders with various Ca/(P+Si) molar ratio were carried out on structural change of hydroxyapatite (HAp) and ${\beta}$-tricalcium phosphate ($\ss$-TCP). The in-vitro bioactivity of the Si-BCP powders was determined by immersing the powders in SBF solution, after that observing the chemical composition and morphology change by X-ray diffraction, scanning electron microscope and energy dispersive spectroscopy.

Fabrication of Porous 3-Dimensional Ti Scaffold and Its Bioactivity by Alkali Treatment (다공성 3차원 Ti 지지체의 제조 및 알카리처리에 따른 생체활성 평가)

  • An, Sang-Hyun;Kim, Seung-Eon;Kim, Kyo-Han;Yun, Hui-Suk;Hyun, Yong-Taek
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.362-368
    • /
    • 2009
  • Ti scaffolds with a three-dimensional porous structure were successfully fabricated using powder metallurgy and modified rapid prototyping (RP) process. The fabricated Ti scaffolds showed a highly porous structure with interconnected pores. The porosity and pore size of the scaffolds were in the range of 66$\sim$72% and $300\sim400\;\mu$m, respectively. The sintering of the fabricated scaffolds under the vacuum caused the Ti particles to bond to each other. The strength of the scaffolds depended on the layering patterns. The compressive strength of the scaffolds ranged from 15 MPa to 52 MPa according to the scaffolds' architecture. The alkali treatment of the fabricated scaffolds in an aqueous NaOH solution was shown to be effective in improving the bioactivity. The surface of the alkali-treated Ti scaffolds had a nano-sized fibre-like structure. The modified surface showed a good apatite forming ability. The apatite was formed on the surface of the alkali treated Ti scaffolds within 1 day. The thickness of the apatite increased when the soaking time in a simulated body fluid (SBF) solution increased. It is expected that the surface modification of Ti scaffolds by alkali treatment could be effective in forming apatites in vivo and can subsequently enhance bone formation.

Surface Modification and Bioactivity Improvement of 3Y-TZP Substrate by Spray Coating of Hydroxyapatite/Fosterite Composite Powder (하이드록시아파타이트/포스터라이트 복합분말의 분사코팅에 의한 3Y-TZP 기판의 표면개질과 생체활성 증진)

  • Yu Hyeon Yun;Jong Kook Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.337-343
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials' resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they've been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3Y-TZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.

Apatite Formation on Polythylene Modified with Silanols by Grafting of Vinyltrimethoxysilane and Subsequent Hydrolysis

  • Kokubo, Tadashi;Uenoyama, Mayo;Kim, Hyun-Min;Minoda, Masahiko;Miyamoto, Takeaki;Nakamura, Takashi
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.265-269
    • /
    • 1999
  • Polyethylene was modified with silanol groups on its surface by photografting of vinyltrimethoxysilane in vapor phase by using benzophenon as a polymerization initiator and by hydrolyzing the methoxysilane groups into the silanol groups with HCI solution. The modified polyethylene formed a dense and homogeneous apatite layer on its surface in a solution with ion concentrations 1.5 times those of human blood plasma within 21 days. This kind of biomimetic process could provide techniques for fabricating apatite-polymer composites with three dimensional structure analogous to the natural bone.

  • PDF

DCPD Formation and Conversion to HAp in Glass and Glass-ceramic Bone Cement (유리 및 결정화 유리 골 시멘트에서 DCPD의 형성 및 수산화 아파타이트로의 전환)

  • Lim, Hyung-Bong;Kim, Cheol-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.26-33
    • /
    • 2011
  • The glass in the system of CaO-$SiO_2-P_2O_5$ and the corresponding glass-ceramics are prepared for bone cements and the behaviors of the hardening and hydroxyapatite formation were studied for the glass and glass-ceramic powders. The glass crystallized into apatite, $\alpha$-wollastonite and $\beta$-wollastonite depending on the glass composition when they were heat-treated at $950^{\circ}C$ for 4 h. A DCPD (dicalcium phosphate dihydrate : $CaHPO_4{\cdot}2H_2O$) was developed when the prepared glass and glass-ceramic powders were mixed with 3M-$H_3PO_4$ solution. The DCPD (Ca/P=1.0) transformed to HAp (Ca/P=1.67) when the bone cement was soaked in simulated body fluid (SBF), and this HAp formation strongly depended on the releasing capacity of $Ca^{2+}$ ions from the glass and glass-ceramic cements. The glass-ceramic bone cement containing $\alpha$-wollastonite crystals showed faster transformation of DCPD to HAp than other glass-ceramics containing $\alpha$- and $\beta$-wollastonite crystals. No hydroxyapatite was observed when the glass-ceramic bone cement containing apatite crystals (36P6C) was soaked in SBF even for 1 month, because no $Ca^{2+}$ ion can be released from the stable apatite crystals.

In vitro Degradation of β-TCP/PLGA Composites Prepared with Microwave Energy in Simulated Body Fluid (마이크로파에 의해 합성된 β-TCP/PLGA 복합체의 의사체액에서의 분해 거동)

  • Jin, Hyeong-Ho;Min, Sang-Ho;Hyun, Yong-Taek;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.676-680
    • /
    • 2006
  • The biodegradable $\beta$-tricalcium phosphate ($\beta$-TCP)/poly(lactide-co-glycolide) (PLGA) composites were synthesized by in situ polymerization with microwave energy. The degradation behavior of $\beta$-TCP/PLGA composite was investigated by soaking in simulated body fluid (SBF) for 4 weeks. The molecular weight of the $\beta$-TCP/PLGA composites decreased with soaking time until week 2, whereas the loss rate of molecular weight reduced after week 2. The incubation time was needed for the degradation of the $\beta$-TCP, indicating that the $\beta$-TCP should be detached from the PLGA matrix and then degraded into SBF solution. The studies of mass loss of the composites with the soaking time revealed that the degradation behavior of PLGA would be processed with the transformation from the polymer to the oligomer followed by the degradation. Morphological changes, whisker-like, due to transformation and degradation of polymer in the composites were observed after week 2. On the basis of the results, it found that the degradation behavior of $\beta$-TCP/PLGA composites was influenced by the $\beta$-TCP content in the composites and the degradation rate of the composites could be controlled by the initial molecular weight of PLGA in the composites.

Characteristics according to the Amount of HAp Added in Resin for Tooth Repair

  • Hwang, Sungu;Lim, Jinhyuck;Ryu, Suchak
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.521-525
    • /
    • 2019
  • A study was conducted to investigate the possibility of a composite material containing a composite resin as a matrix and hydroxyapatite (HAp) powder as a substitute material for tooth repair. As the content of HAp increased, hardness value (111.9 HV at 9%) increased and flexural strength (73.3 MPa at 9%) decreased. Observation of the microstructure after immersion in a simulated body fluid (SBF) solution confirmed a dense structure due to mutual coagulation and curing. It was thought that fine HAp recrystals were formed with the lapse of time, and they were entangled to form a condensation structure and had a dense structure. In addition, since the activity was shown by the ion migration on the surface of a tooth, it was highly likely that a biocompatible bond occurred during tooth contact. Therefore, it could be used as a substitute material for tooth repair.

Evaluation of Effects of Groundwater Pumping Near Stream Using Analytical Model (해석적 모형에 의한 하천변 지하수 양수 영향 분석)

  • Lee, Jeongwoo;Chung, Il-Moon;Kim, Nam Won;Lee, Min Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.617-625
    • /
    • 2016
  • The objective of this study was to evaluate the groundwater drawdown and streamflow depletion due to each groundwater pumping from 110 wells located near stream using the Hunt's analytical solution (1999). The calculated results revealed that the streamflow depletion rate divided by the pumping rate for each well location mostly exceeded about 80% of pumping rate on average for 5 years. The results also showed that the stream boundary condition has made the influence distance shorter and the drawdown distribution skewed except for the streambed hydraulic conductivity and the stream bed factor (SBF) lower than $1.0{\times}10^{-9}m/s$ and 1.0, respectively. It was found that the groundwater pumping has significant impacts on the stream depletion showing above 80 % of stream depletion rate when the streambed hydraulic conductivity is higher than $1.0{\times}10^{-7}m/s$ and the stream depletion factor(SDF) is lower than 100. However, for other conditions, the SDF is not sufficient to be used as a criterion for determining whether the pumping has great impacts on stream depletion or not. Furthermore, the variation of the streambed hydraulic conductance has little change in stream depletion rate for the condition that the stream width is greater than 400 m.