• Title/Summary/Keyword: SB203580

Search Result 134, Processing Time 0.019 seconds

Anti-Obesity Effect of Lactobacillus acidophilus DS0079 (YBS1) by Inhibition of Adipocyte Differentiation through Regulation of p38 MAPK/PPARγ Signaling

  • Youri Lee;Navid Iqbal;Mi-Hwa Lee;Doo-Sang Park;Yong-Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1073-1081
    • /
    • 2024
  • Obesity is spawned by an inequality between the portion of energy consumed and the quantity of energy expended. Disease entities such as cardiovascular disease, arteriosclerosis, hypertension, and cancer, which are correlated with obesity, influence society and the economy. Suppression of adipogenesis, the process of white adipocyte generation, remains a promising approach for treating obesity. Oil Red O staining was used to differentiate 3T3-L1 cells for screening 20 distinct Lactobacillus species. Among these, Lactobacillus acidophilus DS0079, referred to as YBS1, was selected for further study. YBS1 therapy decreased 3T3-L1 cell development. Triglyceride accumulation and mRNA expression of the primary adipogenic marker, peroxisome proliferator-activated receptor gamma (PPARγ), including its downstream target genes, adipocyte fatty acid binding protein 4 and adiponectin, were almost eliminated. YBS1 inhibited adipocyte differentiation at the early stage (days 0-2), but no significant difference was noted between the mid-stage (days 2-4) and late-stage (days 4-6) development. YBS1 stimulated the activation of p38 mitogen-activated protein kinase (p38 MAPK) during the early stages of adipogenesis; however, this effect was eliminated by the SB203580 inhibitor. The data showed that YBS1 administration inhibited the initial development of adipocytes via stimulation of the p38 MAPK signaling pathway, which in turn controlled PPARγ expression. In summary, YBS1 has potential efficacy as an anti-obesity supplement and requires further exploration.

Insulin-Like Growth Factor-I Induces Androgen Receptor Coactivator Expression in Skeletal Muscle Cells through the p38 MAPK and ERK1/2 Pathways (C2C12 세포에서 insulin-like growth factor-I이 p38 MAPK, ERK1/2 신호전달 경로를 통해 엔드로젠 수용체 coactivator 발현에 미치는 영향)

  • Park, Chan-Ho;Kim, Hye-Jin;Kim, Tae-Un;Lee, Won-Jun
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.242-250
    • /
    • 2011
  • Although insulin-like growth factor-I (IGF-I) and androgen receptor (AR) coactivators are well known effectors of skeletal muscle, the molecular mechanism by which signaling pathways integrating AR coactivators and IGF-I in skeletal muscle cells has not been previously examined. In this study, the effects of IGF-I treatment on the gene expression of AR coactivators in the absence of AR ligands and the roles of the p38 MAPK and ERK1/2 signaling pathways in IGF-I-induced AR coactivators induction were examined. C2C12 cells were treated with 250 ng/ml of IGF-I in the presence or absence of specific inhibitors p38 MAPK (SB203580) or ERK1/2 (PD98059). Treatment of C2C12 cells with IGF-I resulted in increased in GRIP-1, SRC-1, and ARA70 protein expression. The levels of GRIP-1, SRC-1, and ARA70 mRNA were also significantly increased after 5min of IGF-I treatment. IGF-I-induced AR coactivator proteins were significantly blocked by pharmacological inhibitors of p38 MAPK and ERK1/2 pathways. However, there was no significant effect of those inhibitors on IGF-I-induced mRNA level of AR coactivators, suggesting that AR coactivators are post-transcriptionally regulated by IGF-I. Furthermore, the present results suggest that IGF-I stimulates the expression of AR coactivators by cooperative activation of the p38 MAPK and ERK1/2 pathways in C2C12 mouse skeletal muscle cells.

Transcriptional Upregulation of Plasminogen Activator Inhibitor-1 in Rat Primary Astrocytes by a Proteasomal Inhibitor MG132

  • Cho, Kyu Suk;Kwon, Kyoung Ja;Jeon, Se Jin;Joo, So Hyun;Kim, Ki Chan;Cheong, Jae Hoon;Bahn, Geon Ho;Kim, Hahn Young;Han, Seol Heui;Shin, Chan Young;Yang, Sung-Il
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • Plasminogen activator inhibitor-1 (PAI-1) is a member of serine protease inhibitor family, which regulates the activity of tissue plasminogen activator (tPA). In CNS, tPA/PAI-1 activity is involved in the regulation of a variety of cellular processes such as neuronal development, synaptic plasticity and cell survival. To gain a more insights into the regulatory mechanism modulating tPA/PAI-1 activity in brain, we investigated the effects of proteasome inhibitors on tPA/PAI-1 expression and activity in rat primary astrocytes, the major cell type expressing both tPA and PAI-1. We found that submicromolar concentration of MG132, a cell permeable peptide-aldehyde inhibitor of ubiquitin proteasome pathway selectively upregulates PAI-1 expression. Upregulation of PAI-1 mRNA as well as increased PAI-1 promoter reporter activity suggested that MG132 transcriptionally increased PAI-1 expression. The induction of PAI-1 downregulated tPA activity in rat primary astrocytes. Another proteasome inhibitor lactacystin similarly increased the expression of PAI-1 in rat primary astrocytes. MG132 activated MAPK pathways as well as PI3K/Akt pathways. Inhibitors of these signaling pathways reduced MG132-mediated upregulation of PAI-1 in varying degrees and most prominent effects were observed with SB203580, a p38 MAPK pathway inhibitor. The regulation of tPA/PAI-1 activity by proteasome inhibitor in rat primary astrocytes may underlie the observed CNS effects of MG132 such as neuroprotection.

Herbal medicine In-Jin-Ho-Tang as a potential anti-cancer drug by induction of apoptosis in human hepatoma HepG2 cells. (사람 간암 세포주인 HepG2에 대한 인진호탕(茵陳蒿湯)의 항암 효과)

  • Yun, Hyun-Joung;Kim, Byung-Wan;Lee, Chang-Hyun;Jung, Jae-Ha;Heo, Sook-Kyung;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.22 no.3
    • /
    • pp.27-37
    • /
    • 2007
  • Objectives: Hepatocellular carcinoma is the most common primary malignant tumor of the liver worldwide. In-Jin-Ho-Tang(IJHT) has been used as a traditional Chinese herbal medicine since ancient time. and today it is widely applied as a medication for jaundice which is associated with inflammation in liver. In this study, I investigated whether methanol extract of IJHT induced HepG2 cancer cell death. Methods: Cytotoxic activity of IJHT on HepG2 cells was using XTT assay. Apoptosis induction by Ros A in HCT116 cells was verified by the induction of cleavage of poly ADP-ribose polymerase (PARP). and activation of caspase-3, -8 and -9. The release of cytochrome c from mitochondria to cytosol. the level of Bcl-2 and Bax and the expression of p53 and p21 were examined by western blotting analysis. Furthermore, MAPKs activation was analyzed by western blotting analysis. Results: IJHT induced apoptosis in HepG2 cells. And treatment of IJHT resulted in the release of cytochrome c into cytosol, decreased anti-apoptotic Bcl-2, and increased pri-apoptotic Bax expression. IJHT markedly inactivated extracellular signal-regulated kinase (ERK1/2), and activated p38 mitogen-activated protein (MAP) kinase. Sodium orthovanadate (SOV), a phosphatase inhibitor, to reverse IJHT-induced ERK1/2 inactivation and SB203580, a specific p38 MAP Kinase inhibitor efficiently blocked apoptosis of HepG2. Thus, IJHT induces apoptosis in HepG2 cells via MAP kinase modulation. Conclusion: These results indicated that IJHT has some potential for use as an anti-cancer agent.

  • PDF

Requirement for ERK Activity in Sodium Selenite-induced Apoptosis of Acute Promyelocytic Leukemia-derived NB4 Cells

  • Han, Bingshe;Wei, Wei;Hua, Fangyuan;Cao, Tingming;Dong, Hua;Yang, Tao;Yang, Yang;Pan, Huazhen;Xu, Caimin
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.196-204
    • /
    • 2007
  • Our previous study has shown that sodium selenite can cause apoptosis in acute promyelocytic leukemia-derived NB4 cells in a caspase-dependent manner, but the detailed mechanism is unknown. Here we demonstrate a requirement for extracellular signal-regulated protein kinase (ERK) in mediating sodium selenite -induced apoptosis in NB4 cell. Though no apparent elevation of ERK activity was observed during the apoptosis in NB4 cells caused by 20 μM sodium selenite treatment, PD98059 and U0126, specific chemical inhibitors of the MEK/ERK signaling pathway, were shown to strongly prevent the apoptosis process, while ERK activator TPA enhanced the process. It is also known that p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125 had slight effects on apoptosis. Further study indicated that ERK exerted its proapoptotic effect only at the early stage of apoptosis and played an antiapoptotic role at the later stages. Taken together, our findings suggest that ERK plays an active role in mediating sodium seleniteinduced apoptosis in NB4 cells .

Effects of Achyranthoside C Dimethyl Ester on Heme Oxygenase-1 Expression and NO Production (Heme Oxygenase-1 발현과 NO 생성에 미치는 Achyranthoside C Dimethyl Ester의 효과)

  • Bang, Soo Young;Song, Ji Su;Moon, Hyung-In;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.976-983
    • /
    • 2015
  • Achyranthoside C dimethyl ester (ACDE) is an oleanolic acid glycoside from Achyranthes japonica which has been used in traditional medicine for the treatment of edema and arthritis. In this study, we investigated the anti-inflammatory effects of ACDE in RAW264.7 macrophages. ACDE significantly induced heme oxygenase-1 (HO-1) gene expression in RAW264.7 cells, while ACDE improved LPS-induced toxicity of cells. And ACDE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Further study demonstrated that ACDE-induced expression of HO-1 was inhibited by inhibitors of phosphatidylinositol 3-kinase (PI-3K) (LY294002), c-Jun kinase (JNK) (SP600125), extracellular signal regulated kinase (ERK) (PD98059) and p38 kinase (SB203580). Moreover, ACDE phosphorylated Akt, JNK, ERK, and p38 MAPK. In addition, ACDE inhibited LPS-induced NO secretion as well as inducible NO synthase (iNOS) expression in a dose-dependent manner. The inhibitory effects of ACDE on iNOS expression were abrogated by small interfering RNA (siRNA)-mediated knock-down of HO-1. Therefore, these results suggest that ACDE suppresses the production of pro-inflammatory mediator such as NO by inducing HO-1 expression via PI-3K/Akt/MAPK-Nrf2 signaling pathway. These findings could help us to understand the active principle included in the roots of A. japonica and the molecular mechanisms underlying anti-inflammatory action of ACDE.

Gardenia jasminoides Exerts Anti-inflammatory Activity via Akt and p38-dependent Heme Oxygenase-1 Upregulation in Microglial Cells (소교세포에서 heme oxygenase-1 발현 유도를 통한 치자(Gardenia jasminoides)의 항염증 효과)

  • Song, Ji Su;Shin, Ji Eun;Kim, Ji-Hee;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • Died Gardenia jasminoides fruit is used as a dye in the food and clothes industries in Asia. The present study investigated the anti-inflammatory effects of aqueous extract of G. jasminoides fruits (GJ) in BV-2 microglial cells. GJ inhibited lipopolysaccharide-induced nitric oxide (NO) secretion, inducible nitric oxide synthase (iNOS) expression, and reactive oxygen species production, without affecting cell viability. Furthermore, GJ increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner. Moreover, the inhibitory effect of GJ on iNOS expression was abrogated by small interfering RNA-mediated knock-down of HO-1. In addition, GJ induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. GJ-mediated expression of HO-1 was suppressed by LY294002, a phosphoinositide 3-kinase (PI-3K) inhibitor, and SB203580, a p38 kinase inhibitor, but not by the extracellular signal-regulated kinase (ERK) inhibitor PD98059 or c-Jun N-terminal kinase (JNK) inhibitor SP600125. GJ also enhanced the phosphorylation of Akt and p38. These results suggest that GJ suppresses the production of NO, a pro-inflammatory mediator, by inducing HO-1 expression via PI-3K/Akt/p38 signaling. These findings illustrate a novel molecular mechanism by which extract from G. jasminoides fruits inhibits neuroinflammation.

Optimization of Culture Conditions for Maintaining Pig Muscle Stem Cells In Vitro

  • Choi, Kwang-Hwan;Yoon, Ji Won;Kim, Minsu;Jeong, Jinsol;Ryu, Minkyung;Park, Sungkwon;Jo, Cheorun;Lee, Chang-Kyu
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.659-667
    • /
    • 2020
  • Muscle stem cells isolated from domestic animals, including cows and pigs, were recently spotlighted as candidates for the production of alternative protein resources, so-called cultured meat or lab-grown meat. In the present study, we aimed to optimize the in vitro culture conditions for the long-term expansion of pig muscle stem cells via the screening of various signaling molecules. Pig muscle stem cells were collected from the biceps femoris muscles of 3-d-old crossbred pigs (Landrace×Yorkshire×Duroc, LYD) and cultured in minimum essential medium-based growth media. However, the pig muscle stem cells gradually lost their proliferation ability and featured morphologies during the long-term culture over two weeks. To find suitable in vitro culture conditions for an extended period, skeletal muscle growth medium-2, including epidermal growth factor (EGF), dexamethasone, and a p38 inhibitor (SB203580), was used to support the stemness of the pig muscle stem cells. Interestingly, pig muscle stem cells were stably maintained in a long-term culture without loss of the expression of myogenic marker genes as determined by PCR analysis. Immunostaining analysis showed that the stem cells were capable of myogenic differentiation after multiple passaging. Therefore, we found that basal culture conditions containing EGF, dexamethasone, and a p38 inhibitor were suitable for maintaining pig muscle stem cells during expanded culture in vitro. This culture method may be applied for the production of cultured meat and further basic research on muscle development in the pig.

Redox Factor-1 Inhibits Cyclooxygenase-2 Expression via Inhibiting of p38 MAPK in the A549 Cells

  • Yoo, Dae-Goon;Kim, Cuk-Seong;Lee, Sang-Ki;Kim, Hyo-Shin;Cho, Eun-Jung;Park, Myoung-Soo;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.139-144
    • /
    • 2010
  • In this study, we evaluated the role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the tumor necrosis factor-$\alpha$ (TNF-$\alpha$) induced cyclooxygenase-2 (COX-2) expression using A549 lung adenocarcinoma cells. TNF-$\alpha$ induced the expression of COX-2 in A549 cells, but did not induce BEAS-2B expression. The expression of COX-2 in A549 cells was TNF-$\alpha$ dose-dependent (5~100 ng/ml). TNF-$\alpha$-stimulated A549 cells evidenced increased Ref-1 expression in a dose-dependent manner. The adenoviral transfection of cells with AdRef-1 inhibited TNF-$\alpha$-induced COX-2 expression relative to that seen in the control cells ($Ad{\beta}gal$). Pretreatment with $10\;{\mu}M$ of SB203580 suppressed TNF-$\alpha$-induced COX-2 expression, thereby suggesting that p38 MAPK might be involved in COX-2 expression in A549 cells. The phosphorylation of p38 MAPK was increased significantly after 5 minutes of treatment with TNF-$\alpha$, reaching a maximum level at 10 min which persisted for up to 60 min. However, p38MAPK phosphorylation was markedly suppressed in the Ref-1-overexpressed A549 cells. Taken together, our results appear to indicate that Ref-1 negatively regulates COX-2 expression in response to cytokine stimulation via the inhibition of p38 MAPK phosphorylation. In the lung cancer cell lines, Ref-1 may be involved as an important negative regulator of inflammatory gene expression.

Berchemia floribunda-mediated Proteasomal Degradation of CyclinD1 via GKS3β-dependent Threonine-286 Phosphorylation in Human Colorectal Cancer Cells (인간 대장암 세포에 대한 먹넌출 추출물의 GSK3β 의존성 threonine-286 인산화를 통한 Cyclin D1 분해)

  • Kang, Yeongyeong;Eo, Hyun Ji;Kim, Da Som;Park, Youngki;Song, Jeong Ho;Park, Gwang Hun
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.271-278
    • /
    • 2020
  • In this study, we evaluated the anti-cancer activity and potential molecular mechanism of 70% ethanol extracts of the Berchemia floribunda (BF) which belongs to Rhamnaceae against human colorectal cancer cells. The treatment of BF decreased the cell proliferation in HCT116 cell and suppressed cellular accumulation of Cyclin D1 protein. Inhibition of proteasomal activity by MG132 attenuated BF-mediated Cyclin D1 downregulation and Cyclin D1 was decreased in the cell treated with BF. These findings indicates that BF-mediated Cyclin D1 downregulation may be result from Cyclin D1 proteasomal degradation. Additionally, BF-mediated Cyclin D1 degradation was blocked in the presence of LiCl, a GSK3β inhibitor, but not PD98059, SP600125, SB203580, Bay11-7082, LY294002 an ERK1/2 inhibitor, JNK inhibitor, p38 inhibitor, IκK inhibitor and PI3K inhibitor. Furthermore, BF phosphorylated Cyclin D1 at threonine-286 (Thr286), and LiCl-induced GSK3β inhibition reduced the BF mediated phosphorylation of Cyclin D1 at Thr286. These results suggested that BF may downregulate Cyclin D1 expression as a potential anti-cancer target through GSK3β dependent Cyclin D1 degradation. Therefore, this study provides that the extract of BF has anticancer activity against human colorectal cancer cells.