• Title/Summary/Keyword: SB203580

Search Result 134, Processing Time 0.023 seconds

Isopsoralen Induces Differentiation of Prechondrogenic ATDC5 Cells via Activation of MAP Kinases and BMP-2 Signaling Pathways

  • Li, Liang;Eun, Jae-Soon;Nepal, Manoj;Ryu, Jae-Ha;Cho, Hyoung-Kwon;Choi, Bo-Yun;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.299-305
    • /
    • 2012
  • Endochondral bone formation is the process by which mesenchymal cells condense to become chondrocytes, which ultimately form new bone. The process of chondrogenic differentiation and hypertrophy is critical for bone formation and as such is regulated by many factors. In this study, we aimed to indentify novel factors that regulate chondrogenesis. We investigated the possible role of isopsoralen in induction of chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Isopsoralen treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Further, ATDC5 cells treated with isopsoralen were stained more intensely with Alcian blue than control cells, suggesting that isopsoralen increases the synthesis of matrix proteoglycans. Similarly, isopsoralen markedly induced the activation of alkaline phosphatase activity compared with control cells. Isopsoralen enhanced the expressions of chondrogenic marker genes such as collagen II, collagen X, OCN, Smad4 and Sox9 in a time-dependent manner. Furthermore, isopsoralen induced the activation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase, but not that of c-jun N-terminal kinase (JNK). Isopsoralen significantly enhanced the protein expression of BMP-2 in a time-dependent manner. PD98059 and SB 203580, inhibitors of ERK and p38 MAPK, respectively, decreased the number of stained cells treated with isopsoralen. Taken together, these results suggest that isopsoralen mediates a chondromodulating effect by BMP-2 or MAPK signaling pathways, and is therefore a possible therapeutic agent for bone growth disorders.

Anti-inflammatory effect of Lonicera caerulea through ATF3 and Nrf2/HO-1 Activation in LPS-stimulated RAW264.7 Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.65-65
    • /
    • 2019
  • In this study, we evaluated the anti-inflammatory effect of extracts of leaves (LCLE) and branches (LCBE) from L. caerulea in LPS-stimulated RAW264.7 cells. Inhibitory effect of LCLE and LCBE against LPS-induced overproduction of NO, iNOS and $IL-1{\beta}$ was higher than LCFE. Furthermore, LCLE and LCBE significantly inhibited the overexpression of COX-2, IL-6 and $TNF-{\alpha}$ in LPS-stimulated RAW264.7 cells. LCLE and LCBE did not inhibited LPS-induced degradation of $I{\kappa}B-{\alpha}$, but blocked the nuclear accumulation of p65. LCLE did not inhibited LPS-induced phosphorylation of ERK1/2 and p38, while LCBE significantly attenuated phosphorylation level of p38. LCLE and LCBE increased HO-1 protein level and decrease of iNOS and $IL-1{\beta}$ expression by LCLE and LCBE was inhibited by HO-1 knockdown. The inhibition of p38 by SB203580 and ROS by NAC blocked HO-1 expression by LCLE and LCBE. LCLE and LCBE increased p38 phosphorylation and the inhibition of ROS by NAC blocked p38 phosphorylation LCLE and LCBE. LCLE and LCBE induced nuclear accumulation of Nrf2, but this was significantly reversed by the inhibition of p38 and ROS. In addition, LCLE and LCBE increased ATF3 expression and decrease of iNOS and $IL-1{\beta}$ expression by LCLE and LCBE was inhibited by ATF3 knockdown. Collectively, LCLE and LCBE inhibited LPS-induced $NF-{\kappa}B$ activation by blocking p65 nuclear accumulation, increased HO-1 expression by ROS/p38/Nrf2 activation, and increased ATF3 expression. Furthermore, LCBE inhibited LPS-induced p38 phosphorylation.

  • PDF

Control Mechanisms of Ovulation by Pituitary Adenylate Cyclase-Activating Polypeptide (Pituitary Adenylate Cyclase-Activating Polypeptide에 의한 배란 조절에 관한 연구)

  • Lee, Yu-Il;Kim, Hyoung-Choon;Kim, Mi-Young;Chun, Sang-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.2
    • /
    • pp.101-111
    • /
    • 2005
  • 배 경: Pituitary adenylate cyclase-activating polypeptide (PACAP)은 양의 시상하부에서 추출된 신경펩타이드 호르몬으로 난소에도 존재하여 배양된 과립막 세포에서 스테로이드합성과 cyclic AMP 형성을 촉진함이 보고되었다. 목 적: 흰쥐 난소를 실험 모델로 사용하여 배란시 황체화호르몬 (luteinizing hormone; LH)에 의해 유도된 PACAP과 PACAP 수용체의 유전자 발현양상과 신호 전달경로를 규명하고자 하였다. 재료 및 방법: 미성숙 흰쥐의 배란전 난포를 체외 배양하면서 LH로 처리하고 PACAP 및 PACAP수용체의 유전자 발현을 보기 위해서는 Northern blot 분석과 in situ hybridization (ISH)을, 그리고 단백질 수준의 PACAP 검색을 위해서는 enzyme linked immunosorbent assay (ELISA) 분석을 이용하였다. 결 과: LH 처리 후 Northern blot상의 PACAP 유전자 발현은 6~9시간에 일시적으로 최고치에 도달하였으며 ISH로 보아 과립막 세포에서 발현됨을 알 수 있었다. ELISA 분석 상 PACAP 단백질도 LH처리 후 6~12시간에 최고치를 나타내었으며, PACAP 수용체 mRNA 역시 3~9시간에 최고치로 과립막 세포에서 발현되었다. Adenylate cyclase (AC) 억제제인 MDL12330A 처리시 LH로 발현된 PACAP mRNA가 감소되며, AC의 활성제인 forskolin 처리에는 LH시와 유사한 PACAP mRNA의 발현양상을 나타내었다. 그러나 protein kinase C (PKC)의 억제제인 chelerythrine과 2-0-tetradecanolphorbol-13-acetate (TPA) 처리로는 PACAP 의 유전자 발현에 영향을 주지 못하였다. 5-lipoxygenase의 억제제인 MK886이나 nordihydroguaiaretic acid (NDGA)로 처리한 결과 LH로 유도된 PACAP 유전자의 발현이 감소되었으나, cyclooxygenase의 억제제인 indomethacin은 별로 영향을 주지 못하였다. MEK와 p38의 억제제인 PD98059와 SB203580도 LH로 촉진 된 PACAP의 유전자 발현을 농도 의존적으로 억제하였다. 결 론 : 배란전 난포에서 PACAP과 PACAP 수용체의 유전자 발현은 모두 LH의 폭발적 분비에 의해 유도되어 일시적으로 과립막 세포에서 나타나 배란을 위한 국소적인 조절 작용을 할 것으로 추정되며, LH로 촉진된 PACAP 유전자 발현을 위한 신호전달은 cAMP-PKA, lipoxygenase 및 MAP kinase 경로를 통하는 것으로 사료된다.

Sphigosine-1-Phosphate-Induced ERK Activation Protects Human Melanocytes from UVB-Induced Apoptosis

  • Kim, Dong-Seok;Kim, Sook-Young;Lee, Jai-Eun;Kwon, Sun-Bang;Joo, Young-Hyun;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • v.26 no.9
    • /
    • pp.739-746
    • /
    • 2003
  • Ultraviolet B (UVB) is known to induce apoptosis in human melanocytes. Here we show the cytoprotective effect of sphingosine-1-phosphate (S1P) against UVB-induced apoptosis. We also show that UVB-induced apoptosis of melanocytes is mediated by caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, and that S1P prevents apoptosis by inhibiting this apoptotic pathway. We further investigated three major mitogen-activated protein (MAP) kinases after UVB irradiation. UVB gradually activated c-Jun N-terminal kinase (JNK) and p38 MAP kinase, while extracellular signal-regulated protein kinase (ERK) was inactivated transiently. Blocking of the p38 MAP kinase pathway using SB203580 promoted cell survival and inhibited the activation of caspase-3 and PARP cleavage. These results suggest that p38 MAP kinase activation may play an important role in the UVB-induced apoptosis of human melanocytes. To explain this cytoprotective effect, we next examined whether S1P could inhibit UVB-induced JNK and p38 MAP kinase activation. However, S1P was not found to have any influence on UVB-induced JNK or p38 MAP kinase activation. In contrast, S1P clearly stimulated the phosphorylation of ERK, and the specific inhibition of the ERK pathway using PD98059 abolished the cytoprotective effect of S1P. Based on these results, we conclude that the activation of p38 MAP kinase plays an important role in UVB-induced apoptosis, and that S1P may show its cytoprotective effect through ERK activation in human melanocytes.

Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling

  • Lee, Seung-On;Joo, Sang Hoon;Kwak, Ah-Won;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.658-666
    • /
    • 2021
  • Podophyllotoxin (PT), a lignan compound from the roots and rhizomes of Podophyllum peltatum, has diverse pharmacological activities including anticancer effect in several types of cancer. The molecular mechanism of the anticancer effects of PT on colorectal cancer cells has not been reported yet. In this study, we sought to evaluate the anticancer effect of PT on human colorectal cancer HCT116 cells and identify the detailed molecular mechanism. PT inhibited the growth of cells and colony formation in a concentration-dependent manner and induced apoptosis as determined by the annexin V/7-aminoactinomycin D double staining assay. PT-induced apoptosis was accompanied by cell cycle arrest in the G2/M phase and an increase in the generation of reactive oxygen species (ROS). The effects of PT on the induction of ROS and apoptosis were prevented by pretreatment with N-acetyl-L-cysteine (NAC), indicating that an increase in ROS generation mediates the apoptosis of HCT116 cells induced by PT. Furthermore, Western blot analysis showed that PT upregulated the level of phospho (p)-p38 mitogen-activated protein kinase (MAPK). The treatment of SB203580, a p38 inhibitor, strongly prevented the apoptosis induced by PT, suggesting that PT-induced apoptosis involved the p38 MAPK signaling pathway. In addition, PT induced the loss of mitochondrial membrane potential and multi-caspase activation. The results suggested that PT induced cell cycle arrest in the G2/M phase and apoptosis through the p38 MAPK signaling pathway by upregulating ROS in HCT116 cells.

Avenanthramide C as a novel candidate to alleviate osteoarthritic pathogenesis

  • Tran, Thanh-Tam;Song, Won-Hyun;Lee, Gyuseok;Kim, Hyung Seok;Park, Daeho;Huh, Yun Hyun;Ryu, Je-Hwang
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.528-533
    • /
    • 2021
  • Osteoarthritis (OA) is a degenerative disorder that can result in the loss of articular cartilage. No effective treatment against OA is currently available. Thus, interest in natural health products to relieve OA symptoms is increasing. However, their qualities such as efficacy, toxicity, and mechanism are poorly understood. In this study, we determined the efficacy of avenanthramide (Avn)-C extracted from oats as a promising candidate to prevent OA progression and its mechanism of action to prevent the expression of matrix-metalloproteinases (MMPs) in OA pathogenesis. Interleukin-1 beta (IL-1β), a proinflammatory cytokine as a main causing factor of cartilage destruction, was used to induce OA-like condition of chondrocytes in vitro. Avn-C restrained IL-1β-mediated expression and activity of MMPs, such as MMP-3, -12, and -13 in mouse articular chondrocytes. Moreover, Avn-C alleviated cartilage destruction in experimental OA mouse model induced by destabilization of the medial meniscus (DMM) surgery. However, Avn-C did not affect the expression of inflammatory mediators (Ptgs2 and Nos) or anabolic factors (Col2a1, Aggrecan, and Sox9), although expression levels of these genes were upregulated or downregulated by IL-1β, respectively. The inhibition of MMP expression by Avn-C in articular chondrocytes was mediated by p38 kinase and c-Jun N-terminal kinase (JNK) signaling, but not by ERK or NF-κB. Interestingly, Avn-C added with SB203580 and SP600125 as specific inhibitors of p38 kinase and JNK, respectively, enhanced its inhibitory effect on the expression of MMPs in IL-1β treated chondrocytes. Taken together, these results suggest that Avn-C is an effective candidate to prevent OA progression and a natural health product to relieve OA pathogenesis.

Propofol promotes osteoclastic bone resorption by increasing DC-STAMP expression

  • Kim, Eun-Jung;Kim, Hyung Joon;Baik, Seong Wan;Kim, Kyung-Hoon;Ryu, Sie Jeong;Kim, Cheul-Hong;Shin, Sang-Wook
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.6
    • /
    • pp.349-359
    • /
    • 2018
  • Background: Propofol is an intravenous anesthetic which has antioxidant effects due to its similarity in molecular structure to ${\alpha}$-tocopherol. It has been reported that ${\alpha}$-tocopherol increases osteoclast fusion and bone resorption. Here, we investigated the effects of propofol on signaling pathways of osteoclastogenic gene expression, as well as osteoclastogenesis and bone resorption using bone marrow-derived macrophages (BMMs). Methods: BMMs were cultured with macrophage colony-stimulating factor (M-CSF) alone or M-CSF plus receptor activator of nuclear factor kappa B ligand (RANKL) in the presence of propofol ($0-50{\mu}M$) for 4 days. Mature osteoclasts were stained for tartrate-resistant acid phosphatase (TRAP) and the numbers of TRAP-positive multinucleated osteoclasts were counted. To examine the resorption activities of osteoclasts, a bone resorption assay was performed. To identify the mechanism of action of propofol on the formation of multinucleated osteoclasts, we focused on dendritic cell-specific transmembrane protein (DC-STAMP), a protein essential for pre-osteoclastic cell fusion. Results: Propofol increased the formation of TRAP-positive multinucleated osteoclasts. In addition, the bone resorption assay revealed that propofol increased the bone resorption area on dentin discs. The mRNA expression of DC-STAMP was upregulated most strongly in the presence of both RANKL and propofol. However, SB203580, a p38 inhibitor, significantly suppressed the propofol/RANKL-induced increase in mRNA expression of DC-STAMP. Conclusion: We have demonstrated that propofol enhances osteoclast differentiation and maturation, and subsequently increases bone resorption. Additionally, we identified the regulatory pathway underlying osteoclast cell-cell fusion, which was enhanced by propofol through p38-mediated DC-STAMP expression.

L-ascorbic acid induces apoptosis in human laryngeal epidermoid Hep-2 cells by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells/mitogen-activated protein kinase/Akt signaling pathway

  • Park, Jung-Sun;Kim, Yoon-Jung;Park, Sam Young;Chung, Kyung-Yi;Oh, Sang-Jin;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.169-178
    • /
    • 2020
  • L-ascorbic acid (L-AA; vitamin C) induces apoptosis in cancer cells. This study aimed to elucidate the molecular mechanisms of L-AA-induced apoptosis in human laryngeal epidermoid carcinoma Hep-2 cells. L-AA suppressed the viability of Hep-2 cells and induced apoptosis, as shown by the cleavage and condensation of nuclear chromatin and increased number of Annexin V-positive cells. L-AA decreased Bcl-2 protein expression but upregulated Bax protein levels. In addition, cytochrome c release from the mitochondria into the cytosol and activation of caspase-9, -8, and -3 were enhanced by L-AA treatment. Furthermore, apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were translocated into the nucleus during apoptosis of L-AA-treated Hep-2 cells. L-AA effectively inhibited the constitutive nuclear factor-κB (NF-κB) activation and attenuated the nuclear expression of the p65 subunit of NF-κB. Interestingly, L-AA treatment of Hep-2 cells markedly activated Akt and mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase [JNK]) and and LY294002 (Akt inhibitor), SB203580 (p38 inhibitor) or SP600125 (a JNK inhibitor) decreased the levels of Annexin V-positive cells. These results suggested that L-AA induces the apoptosis of Hep-2 cells via the nuclear translocation of AIF and EndoG by modulating the Bcl-2 family and MAPK/Akt signaling pathways.

Picropodophyllotoxin Induces G1 Cell Cycle Arrest and Apoptosis in Human Colorectal Cancer Cells via ROS Generation and Activation of p38 MAPK Signaling Pathway

  • Lee, Seung-On;Kwak, Ah-Won;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Joo, Sang Hoon;Shim, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1615-1623
    • /
    • 2021
  • Picropodophyllotoxin (PPT), an epimer of podophyllotoxin, is derived from the roots of Podophyllum hexandrum and exerts various biological effects, including anti-proliferation activity. However, the effect of PPT on colorectal cancer cells and the associated cellular mechanisms have not been studied. In the present study, we explored the anticancer activity of PPT and its underlying mechanisms in HCT116 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to monitor cell viability. Flow cytometry was used to evaluate cell cycle distribution, the induction of apoptosis, the level of reactive oxygen species (ROS), assess the mitochondrial membrane potential (Δψm), and multi-caspase activity. Western blot assays were performed to detect the expression of cell cycle regulatory proteins, apoptosis-related proteins, and p38 MAPK (mitogen-activated protein kinase). We found that PPT induced apoptosis, cell cycle arrest at the G1 phase, and ROS in the HCT116 cell line. In addition, PPT enhanced the phosphorylation of p38 MAPK, which regulates apoptosis and PPT-induced apoptosis. The phosphorylation of p38 MAPK was inhibited by an antioxidant agent (N-acetyl-L-cysteine, NAC) and a p38 inhibitor (SB203580). PPT induced depolarization of the mitochondrial inner membrane and caspase-dependent apoptosis, which was attenuated by exposure to Z-VAD-FMK. Overall, these data indicate that PPT induced G1 arrest and apoptosis via ROS generation and activation of the p38 MAPK signaling pathway.

HMGB1 increases RAGE expression in vascular smooth muscle cells via ERK and p-38 MAPK-dependent pathways

  • Jang, Eun Jeong;Kim, Heejeong;Baek, Seung Eun;Jeon, Eun Yeong;Kim, Ji Won;Kim, Ju Yeon;Kim, Chi Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.389-396
    • /
    • 2022
  • The increased expression of receptors for advanced glycation end-product (RAGE) is known as a key player in the progression of vascular remodeling. However, the precise signal pathways regulating RAGE expression in vascular smooth muscle cells (VSMCs) in the injured vasculatures are unclear. Given the importance of mitogen-activated protein kinase (MAPK) signaling in cell proliferation, we investigated the importance of MAPK signaling in high-mobility group box 1 (HMGB1)-induced RAGE expression in VSMCs. In HMGB1 (100 ng/ml)-stimulated human VSMCs, the expression of RAGE mRNA and protein was increased in association with an increase in AGE-induced VSMC proliferation. The HMGB1-induced RAGE expression was attenuated in cells pretreated with inhibitors for ERK (PD98059, 10 μM) and p38 MAPK (SB203580, 10 μM) as well as in cells deficient in ERK and p38 MAPK using siRNAs, but not in cells deficient of JNK signaling. In cells stimulated with HMGB1, the phosphorylation of ERK, JNK, and p38 MAPK was increased. This increase in ERK and p38 MAPK phosphorylation was inhibited by p38 MAPK and ERK inhibitors, respectively, but not by JNK inhibitor. Moreover, AGE-induced VSMC proliferation in HMGB1-stimulated cells was attenuated in cells treated with ERK and p38 MAPK inhibitors. Taken together, our results indicate that ERK and p38 MAPK signaling are involved in RAGE expression in HMGB1-stimulated VSMCs. Thus, the ERK/p38 MAPK-RAGE signaling axis in VSMCs was suggested as a potential therapeutic target for vascular remodeling in the injured vasculatures.