• Title/Summary/Keyword: SB 발파

Search Result 3, Processing Time 0.016 seconds

Influence of the Initiation Error of the Delay Detonator on the Rock Fracture Process in Smooth Blasting (SB발파에서 지발뇌관의 기폭초시오차가 암반파괴과정에 미치는 영향)

  • 조상호;양형식;금자승비고
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.121-132
    • /
    • 2004
  • Dynamic fracture processes of rock were analyzed to investigate the influence of the initiation error of the delay detonator in smooth blasting. The analysis models for the smooth blasting considered two blast geometries with three charge holes, and the simultaneous initiations without initiation error, with the initiation error of electronic delay detonator and with the initiation error of pyrotechnically delay detonator(DS detonator) were applied to the charge holes. In order to examine the effect of electronic and DS initiation detonator on the smooth blasting, the fracture process results were analyzed statistically.

Study on the Precise Controlling of Fracture Plane in Smooth Blasting Method (SB발파에서 파단면 제어의 고도화에 관한 연구)

  • Cho, Sang-Ho;Jeong, Yun-Young;Kim, Kwang-Yum;Kaneko, Katsuhiko
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • Recently, in order to achieve smooth fracture plane and minimize the excavation damage zone in rock blasting, controlled blasting methods which utilize new technologies such as electronic delay detonator (EDD) and a notched charge hole have been suggested. In this study, smooth blastings utilizing three wing type notched charge holes are simulated to investigate the influence of explosive initial density on the resultant fracture plane and damage zone using dynamic fracture process analysis (DFPA) code. Finally, based on the dynamic fracture process analyses, novel smooth blasting method, ED-Notch SB (Electronic Detonator Notched Charge Hole Smooth Blasting) is suggested.

Numerical Study on the Effectiveness of Guide Holes on the Fracture Plane Control in Smooth Blasting (SB발파에서 무장약 균열 유도공의 파단면 제어 유효성에 관한 수치해석적 연구)

  • Kim, Hyon-Soo;Kim, Seung-Kon;Song, Young-Su;Kim, Kwang-Yeom;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.235-243
    • /
    • 2011
  • In this study, a control blast method, which utilizes crack guide holes, is suggested to achieve smooth fracture plane and minimize blast damage zone (BDZ) in smooth blasting. In order to verify the effectiveness of crack guide holes on the fracture plane control in blasting, fracture process analyses which consider regular smooth blasting and guide hole smooth blasting had been conducted and the fracture planes resulting from the analyses had been compared. The analyses models considered the ignition of the blast holes using detonation cords and each guide hole placed between blast holes. From the results, the smooth blasting utilizing guide holes showed lower fracture plane roughness than regular smooth blasting method in the hole spacing range between 20 to 40cm.