• 제목/요약/키워드: SAW(submerged arc welding)

Search Result 43, Processing Time 0.024 seconds

A Single Current Sensor-Based High-Power Submerged Arc Welding System (단일전류센서를 적용한 대용량 서브머지드 아크 용접 시스템)

  • Ban, Choong Hwan;Eun, J.M;Cho, Young Hoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.461-462
    • /
    • 2013
  • In this paper, a studied the SAW system being developed shipbuilding and plant industry with changing welding method to progress productivity. It studies a SAW system using one sensor instead previous one which is using two sensors. It suggests SAW system which has AC output with high current makes high speed welding and DC output with accurate arcing makes detailed control.

  • PDF

Effect of Welding Heat Input and PWHT Cooling Rate on Mechanical Properties of Welded Region at SAW of 1.25Cr-0.5Mo Steel for Pressure Vessel (압력용기용 1.25Cr-0.5Mo 강의 Submerged Arc Welding시 입열 및 PWHT 냉각속도가 용접부 기계적 성질에 미치는 영향)

  • Lee Dong-Hwan;Park Jong-Jin
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.26-31
    • /
    • 2004
  • In order to propose the optimum welding condition for field application, the effects of welding heat input and cooling rate at PWHT on the mechanical properties were investigated. Submerged arc welding of 1.25Cr-0.5Mo steel for pressure vessel was conducted at welding heat inputs of 15.2kJ/cm, 30.9kJ/cm, and 44.8kJ/cm, and cooling rates of 184$^{\circ}C$/hr, 55$^{\circ}C$/hr, and 2$0^{\circ}C$/hr at PWHT. From the test results, as the welding heat input increase up to 30.9kJ/cm, the changes of microstructure and impact toughness were small. At the heat input of 44.8kJ/cm, however, toughness decreased obviously due to the coarsening of coarse-grained HAZ and formation of ferrite at bainite grainboundary of weld metal. On the other hand, cooling rates at PWHT did not effect on the changes in microstructure and mechanical properties. Even though tensile strength and impact toughness at all welding conditions of this study were above the minimum specification requirement, it was confirmed that heat input of 30.9kJ/cm was the optimum welding condition to improve welding performance by higher heat input.

A Development of New Method of Segmenting One-Dimensional Signal and Vision Sensor (용접선 자동 추적용 일차원 분할 알고리즘 및 시각센서 개발)

  • 문형순;김재권
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.40-42
    • /
    • 2000
  • This paper presents a new method of segmenting a one-dimensional signal into a set of features of type(line, Vee-groove, Lap-joint and etc.), A set of requirements for the segmentation process result from the application area, which in this case are laser welding, GMAW(Gas Metal Arc Welding), SAW(Submerged Arc Welding) and high speed tack welding. The algorithm is able to detect an exact welding position in the presence of noise and missing data, yet is reasonably economical to implement

  • PDF

Vision Sensor by Using Optical Fiber And Digital Potentiometer for Automatic Control of Welding Conditions (광섬유를 이용한 시각센서 및 용접조건 자동제어 용 디지털 포텐쇼메터)

  • 문형순;김용백
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.300-302
    • /
    • 2001
  • This paper describes several advances in vision sensor and process control techniques for applications in Submerged Arc Welding(SAW) which combine to give a fully automatic system capable of controlling and adapting the overall welding process.

  • PDF

Development of Welding Flux and Process for Prevention of Cold Cracking in SAW Weld Metal (잠호용접부 균열방지를 위한 용접 플락스 및 시공기법 개발)

  • Choi, Kee-Young;Kim, Chan;Kim, Young-Pil
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.118-127
    • /
    • 2007
  • SAW(Submerged Arc Welding) process is generally applied to a wide range of welding area in the fabrication of steel structure. This process has a good characteristic properties such as the high quality of welds and the high deposition rates, but in case of welding on a thick steel plate, it also has higher cold crack susceptibility than that of a thin steel plate. The purpose of this research is to find the main factor of crack generation and clarify the countermeasure for crack prevention, and then establish the optimum welding condition in a heavy thick steel plate. The results of this study are as follows, 1. The cause of crack generation is found the diffusible hydrogen penetrated into weld metal by decomposition of the remained moisture in SAW flux during welding. 2. For the removal of diffusible hydrogen, the raw materials of SAW flux are to be dehydrated at the high temperature in the initial manufacturing stage. 3. Mechanical properties of weld metal welded with the dehydrated SAW flux were evaluated very excellent, furthermore the weld metal has been proved to have low diffusible hydrogen content with 3.1ml /100g. 4. The weldability and quality welded with thick steel plates were improved by establishing the new optimum welding condition.

  • PDF

Prediction of Weld Penetration and Deposited Metal Area in Accordance with Weld Parameters in Tandem Submerged Arc Welding Process (탄뎀 서브머지드 용접 공법의 용접조건에 따른 용입깊이 및 용착면적 예측)

  • Park, Se-Jin;Nam, Seong-Kil;Kweon, Chang-Gil
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.71-76
    • /
    • 2011
  • Submerged arc welding method from both sides is generally applied to the welding of main panel manufacturing process during ship construction. The tandem SAW method is applied to improve the productivity. The various weld defects that occur during tandem SAW method are melt through, incomplete penetration, undercut and overlap etc. It could be thought that the reasons for these defects are mainly lack of prediction ability for penetration depth and deposited metal area. In this research, total 5 kinds of welding factors for experiment like current of lead pole, voltage of lead pole, current of trail pole, voltage of trail pole and welding speed are adopted. Weld tests are carried out for the analysis of variation effects of these factors on penetration depth and deposited metal area. Based on the test and analysis results, it is possible to obtain the prediction equation for the effect of these factors on the amount of deposited metal and penetration depth. As per the verification of the results by additional tests, it is confirmed that the prediction equation, include a error margin of ${\pm}2mm$ for penetration depth and ${\pm}10mm2$ for deposited metal area.

A Study on Development of Automatic Welding System by Using Multiple Welding Troches in SAW (다전극 SAW 공법을 이용한 무인 용접자동화 장치 개발에 관한 연구)

  • 정문영;김정섭;문형순;권혁준
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.43-46
    • /
    • 1999
  • It has been suggested that the motivation for automation of welding processes ncludes the replacement and extension of the functions of human operators. Among these types of the welding automation, SAW(Submerged Arc Welding) was prevalently used, because it is highly suited to a wide range of application, especially for the high speed welding. A Significant portion of the total manufacturing time for a pipe fabrication process is spent on the welding following primary machining and fit-up processes. To achieve the reliable weld bead appearance, the automatic seam tracking and adaptive control to fill the groove are urgently needed. This paper proposed the mechanical functions of multi-torches welding system, flux supply and recovery system in conjunction with the complex air pulsing method and various types of methodologies. It was shown that the multi-torches welding system revealed the high welding qualities for the circular and rectangular pipes. In conclusion, the multi-torches welding system developed will contribute the advanced welding technology, welding automation and increment of the market in these areas.

  • PDF

Microstructure and CTOD (crack tip opening displacement) of Deposit Weld Metal in 30 mm Thick Plate

  • Lee Hae-Woo;Kim Hyok-Ju;Park Jeong-Ung;Kang Chang-Yong;Sung Jang-Hyun
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.642-648
    • /
    • 2004
  • The microstructure and crack tip opening displacement (CTOD) of deposit weld metal were investigated for a 30 mm- thick plate welded with flux cored arc welding (FCAW) and submerged arc welding (SAW) processes. The CTOD test was carried out both as welded condition and as stress-relieved specimen by local compression. The crack growth rates in FCAW were faster than those in a SAW, and the acicular ferrite content by the SAW process was increased relatively more than that by the FCAW process. The fatigue crack growth rate in a welded specimen was faster than that in locally compressed specimen. The CTOD value of locally compressed specimens was lower than that of as welded specimen. Furthermore, the CTOD value tested with the SAW process was higher than that tested with the FCAW process.