• Title/Summary/Keyword: SARS-CoV-2 virus

Search Result 88, Processing Time 0.025 seconds

Dynamics of Viral and Host 3D Genome Structure upon Infection

  • Meyer J. Friedman;Haram Lee;Young-Chan Kwon;Soohwan Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1515-1526
    • /
    • 2022
  • Eukaryotic chromatin is highly organized in the 3D nuclear space and dynamically regulated in response to environmental stimuli. This genomic organization is arranged in a hierarchical fashion to support various cellular functions, including transcriptional regulation of gene expression. Like other host cellular mechanisms, viral pathogens utilize and modulate host chromatin architecture and its regulatory machinery to control features of their life cycle, such as lytic versus latent status. Combined with previous research focusing on individual loci, recent global genomic studies employing conformational assays coupled with high-throughput sequencing technology have informed models for host and, in some cases, viral 3D chromosomal structure re-organization during infection and the contribution of these alterations to virus-mediated diseases. Here, we review recent discoveries and progress in host and viral chromatin structural dynamics during infection, focusing on a subset of DNA (human herpesviruses and HPV) as well as RNA (HIV, influenza virus and SARS-CoV-2) viruses. An understanding of how host and viral genomic structure affect gene expression in both contexts and ultimately viral pathogenesis can facilitate the development of novel therapeutic strategies.

Immune Cells Are Differentially Affected by SARS-CoV-2 Viral Loads in K18-hACE2 Mice

  • Jung Ah Kim;Sung-Hee Kim;Jeong Jin Kim;Hyuna Noh;Su-bin Lee;Haengdueng Jeong;Jiseon Kim;Donghun Jeon;Jung Seon Seo;Dain On;Suhyeon Yoon;Sang Gyu Lee;Youn Woo Lee;Hui Jeong Jang;In Ho Park;Jooyeon Oh;Sang-Hyuk Seok;Yu Jin Lee;Seung-Min Hong;Se-Hee An;Joon-Yong Bae;Jung-ah Choi;Seo Yeon Kim;Young Been Kim;Ji-Yeon Hwang;Hyo-Jung Lee;Hong Bin Kim;Dae Gwin Jeong;Daesub Song;Manki Song;Man-Seong Park;Kang-Seuk Choi;Jun Won Park;Jun-Won Yun;Jeon-Soo Shin;Ho-Young Lee;Ho-Keun Kwon;Jun-Young Seo;Ki Taek Nam;Heon Yung Gee;Je Kyung Seong
    • IMMUNE NETWORK
    • /
    • v.24 no.2
    • /
    • pp.7.1-7.19
    • /
    • 2024
  • Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019. In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virus-infected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105 PFU; however, 1×12 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.

Coronaviruses: SARS, MERS and COVID-19 (코로나바이러스: 사스, 메르스 그리고 코비드-19)

  • Kim, Eun-Joong;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.297-309
    • /
    • 2020
  • Coronaviruses were originally discovered as enzootic infections that limited to their natural animal hosts, but some strains have since crossed the animal-human species barrier and progressed to establish zoonotic diseases. Accordingly, cross-species barrier jumps resulted in the appearance of SARS-CoV, MERS-CoV, and SARS-CoV-2 that manifest as virulent human viruses. Coronaviruses contain four main structural proteins: spike, membrane, envelope, and nucleocapsid protein. The replication cycle is as follows: cell entry, genome translation, replication, assembly, and release. They were not considered highly pathogenic to humans until the outbreaks of SARS-CoV in 2002 in Guangdong province, China. The consequent outbreak of SARS in 2002 led to an epidemic with 8,422 cases, and a reported worldwide mortality rate of 11%. MERS-CoVs is highly related to camel CoVs. In 2019, a cluster of patients infected with 2019-nCoV was identified in an outbreak in Wuhan, China, and soon spread worldwide. 2019-nCoV is transmitted through the respiratory tract and then induced pneumonia. Molecular diagnosis based on upper respiratory region swabs is used for confirmation of this virus. This review examines the structure and genomic makeup of the viruses as well as the life cycle, diagnosis, and potential therapy.

Beyond SARS-CoV-2: Lessons That African Governments Can Apply in Preparation for Possible Future Epidemics

  • Oboh, Mary Aigbiremo;Omoleke, Semeeh Akinwale;Imafidon, Christian Eseigbe;Ajibola, Olumide;Oriero, Eniyou Cheryll;Amambua-Ngwa, Alfred
    • Journal of Preventive Medicine and Public Health
    • /
    • v.53 no.5
    • /
    • pp.307-310
    • /
    • 2020
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has placed unprecedented pressure on healthcare systems, even in advanced economies. While the number of cases of SARS-CoV-2 in Africa compared to other continents has so far been low, there are concerns about under-reporting, inadequate diagnostic tools, and insufficient treatment facilities. Moreover, proactiveness on the part of African governments has been under scrutiny. For instance, issues have emerged regarding the responsiveness of African countries in closing international borders to limit trans-continental transmission of the virus. Overdependence on imported products and outsourced services could have contributed to African governments' hesitation to shut down international air and seaports. In this era of emerging and re-emerging pathogens, we recommend that African nations should consider self-sufficiency in the health sector as an urgent priority, as this will not be the last outbreak to occur. In addition to the Regional Disease Surveillance Systems Enhancement fund (US$600 million) provided by the World Bank for strengthening health systems and disease surveillance, each country should further establish an epidemic emergency fund for epidemic preparedness and response. We also recommend that epidemic surveillance units should create a secure database of previous and ongoing pandemics in terms of aetiology, spread, and treatment, as well as financial management records. Strategic collection and analysis of data should also be a central focus of these units to facilitate studies of disease trends and to estimate the scale of requirements in preparation and response to any future pandemic or epidemic.

Distinctive Combinations of RBD Mutations Contribute to Antibody Evasion in the Case of the SARS-CoV-2 Beta Variant

  • Tae-Hun Kim;Sojung Bae;Sunggeun Goo;Jinjong Myoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1587-1594
    • /
    • 2023
  • Since its first report in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a grave threat to public health. Virus-specific countermeasures, such as vaccines and therapeutics, have been developed and have contributed to the control of the viral pandemic, which has become endemic. Nonetheless, new variants continue to emerge and could cause a new pandemic. Consequently, it is important to comprehensively understand viral evolution and the roles of mutations in viral infectivity and transmission. SARS-CoV-2 beta variant encode mutations (D614G, N501Y, E484K, and K417N) in the spike which are frequently found in other variants as well. While their individual role in viral infectivity has been elucidated against various therapeutic antibodies, it still remains unclear whether those mutations may act additively or synergistically when combined. Here, we report that N501Y mutation shows differential effect on two therapeutic antibodies tested. Interestingly, the relative importance of E484K and K417N mutations in antibody evasion varies depending on the antibody type. Collectively, these findings suggest that continuous efforts to develop effective antibody therapeutics and combinatorial treatment with multiple antibodies are more rational and effective forms of treatment.

Immunopathogenesis of COVID-19 and early immunomodulators

  • Lee, Kyung-Yil;Rhim, Jung-Woo;Kang, Jin-Han
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.7
    • /
    • pp.239-250
    • /
    • 2020
  • The novel coronavirus disease 2019 (COVID-19) is spreading globally. Although its etiologic agent is discovered as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), there are many unsolved issues in COVID-19 and other infectious diseases. The causes of different clinical phenotypes and incubation periods among individuals, species specificity, and cytokine storm with lymphopenia as well as the mechanism of damage to organ cells are unknown. It has been suggested that in viral pneumonia, virus itself is not a direct cause of acute lung injury; rather, aberrant immune reactions of the host to the insults from viral infection are responsible. According to its epidemiological and clinical characteristics, SARS-CoV-2 may be a virus with low virulence in nature that has adapted to the human species. Current immunological concepts have limited ability to explain such unsolved issues, and a presumed immunopathogenesis of COVID-19 is presented under the protein-homeostasis-system hypothesis. Every disease, including COVID-19, has etiological substances controlled by the host immune system according to size and biochemical properties. Patients with severe pneumonia caused by SARS-CoV-2 show more severe hypercytokinemia with corresponding lymphocytopenia than patients with mild pneumonia; thus, early immunomodulator treatment, including corticosteroids, has been considered. However, current guidelines recommend their use only for patients with advanced pneumonia or acute respiratory distress syndrome. Since the immunopathogenesis of pneumonia may be the same for all patients regardless of age or severity and the critical immune-mediated lung injury may begin in the early stage of the disease, early immunomodulator treatment, including corticosteroids and intravenous immunoglobulin, can help reduce morbidity and possibly mortality rates of older patients with underlying conditions.

Review of Environmental Characteristics and Building Finishes Controlling the Spread of SARS-CoV-2 - Focused on overseas literature related to antiviral experiments (코로나 바이러스 확산억제를 위한 환경 및 건축마감재료 고찰 - 항바이러스 재료 관련 해외 문헌을 중심으로)

  • Park, Yonghyun;Lee, Hyunjin;Kwon, Soonjung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.29 no.4
    • /
    • pp.37-44
    • /
    • 2023
  • Purpose: Currently, research on environmental conditions and finishing materials for medical facilities with proven antiviral performance is poor in Korea. Through this study, we have explored environmental characteristics and finishing materials that can be used to control cross-infection when constructing medical facilities. Methods: Experiments in overseas papers related to antiviral effects of environmental conditions, spatial compartments, and interior finishes have been analyzed. Results: The higher the temperature, the higher the humidity, and the higher the illuminance of sunlight, the lower the viability of the corona-virus. The proliferation of viruses was suppressed on the surface of the copper alloy. Materials such as brushed steel are the ones that maintain the strongest viability. Among the characteristics of the surface, survival and propagation power differ depending on whether it is porous or hydrophilic. In the case of infection ward actually operated in Italy, the presence of airborne viruses in contaminated and non-contaminated spaces differed significantly. Corona-virus has been identified in reachable parts such as door handles and medical shelves in quasi-contaminated spaces, which are spaces between contaminated and non-contaminated spaces, but the corona-virus has not been identified in cases of out-of-touch walls. Implications: It is necessary to evaluate the performance by testing the construction finishing materials of infection control facilities according to domestic conditions.

Epidemiological application of the cycle threshold value of RT-PCR for estimating infection period in cases of SARS-CoV-2

  • Soonjong Bae;Jong-Myon Bae
    • Journal of Medicine and Life Science
    • /
    • v.20 no.3
    • /
    • pp.107-114
    • /
    • 2023
  • Epidemiological control of coronavirus disease 2019 (COVID-19) is needed to estimate the infection period of confirmed cases and identify potential cases. The present study, targeting confirmed cases for which the time of COVID-19 symptom onset was disclosed, aimed to investigate the relationship between intervals (day) from symptom onset to testing the cycle threshold (CT) values of real-time reverse transcription-polymerase chain reaction. Of the COVID-19 confirmed cases, those for which the date of suspected symptom onset in the epidemiological investigation was specifically disclosed were included in this study. Interval was defined as the number of days from symptom onset (as disclosed by the patient) to specimen collection for testing. A locally weighted regression smoothing (LOWESS) curve was applied, with intervals as explanatory variables and CT values (CTR for RdRp gene and CTE for E gene) as outcome variables. After finding its non-linear relationship, a polynomial regression model was applied to estimate the 95% confidence interval values of CTR and CTE by interval. The application of LOWESS in 331 patients identified a U-shaped curve relationship between the CTR and CTE values according to the number of interval days, and both CTR and CTE satisfied the quadratic model for interval days. Active application of these results to epidemiological investigations would minimize the chance of failing to identify individuals who are in contact with COVID-19 confirmed cases, thereby reducing the potential transmission of the virus to local communities.

Comparison of Digital PCR and Quantitative PCR with Various SARS-CoV-2 Primer-Probe Sets

  • Park, Changwoo;Lee, Jina;Hassan, Zohaib ul;Ku, Keun Bon;Kim, Seong-Jun;Kim, Hong Gi;Park, Edmond Changkyun;Park, Gun-Soo;Park, Daeui;Baek, Seung-Hwa;Park, Dongju;Lee, Jihye;Jeon, Sangeun;Kim, Seungtaek;Lee, Chang-Seop;Yoo, Hee Min;Kim, Seil
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.358-367
    • /
    • 2021
  • The World Health Organization (WHO) has declared the coronavirus disease 2019 (COVID-19) as an international health emergency. Current diagnostic tests are based on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method, which is the gold standard test that involves the amplification of viral RNA. However, the RT-qPCR assay has limitations in terms of sensitivity and quantification. In this study, we tested both qPCR and droplet digital PCR (ddPCR) to detect low amounts of viral RNA. The cycle threshold (CT) of the viral RNA by RT-PCR significantly varied according to the sequences of the primer and probe sets with in vitro transcript (IVT) RNA or viral RNA as templates, whereas the copy number of the viral RNA by ddPCR was effectively quantified with IVT RNA, cultured viral RNA, and RNA from clinical samples. Furthermore, the clinical samples were assayed via both methods, and the sensitivity of the ddPCR was determined to be equal to or more than that of the RT-qPCR. However, the ddPCR assay is more suitable for determining the copy number of reference materials. These findings suggest that the qPCR assay with the ddPCR defined reference materials could be used as a highly sensitive and compatible diagnostic method for viral RNA detection.