• 제목/요약/키워드: SARS-CoV-2 vaccination

검색결과 45건 처리시간 0.025초

COVID-19 (SARS-CoV-2) mRNA vaccination does not affect basal sex hormone levels (follicle-stimulating hormone, luteinizing hormone, estradiol) in reproductive-age women

  • Haeng Jun Jeon;Woo Sik Lee;Ji Eun Park;Ji Young Hwang;Ji Won Kim
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제51권2호
    • /
    • pp.151-157
    • /
    • 2024
  • Objective: People vaccinated with the coronavirus disease 2019 (COVID-19) (severe acute respiratory syndrome coronavirus-2 [SARS-CoV-2]) mRNA vaccine have reported experiencing various adverse effects. For instance, reproductive-age women have presented with complaints of abnormal uterine bleeding or menstrual cycle changes. We speculated that differences in basal sex hormone levels before and after vaccination may be present in women who experienced irregular bleeding or menstrual cycle changes; thus, this study aimed to investigate the differences in basal sex hormone levels of women before and after two doses of SARS-CoV-2 mRNA vaccination. Methods: This retrospective study included patients who received SARS-CoV-2 mRNA vaccines between January 2021 and February 2022 at a single center. In an outpatient setting, patients were queried regarding their menstrual cycle, the date of SARS-CoV-2 mRNA vaccination, vaccination type, and vaccination side effects. Differences in basal hormone levels (menstrual cycle days 2-3, follicle-stimulating hormone [FSH], luteinizing hormone [LH], and estradiol) before and after vaccination were compared. Results: Among the 326 patients, patients with no laboratory records of the hormones were excluded. The median time interval between SARS-CoV-2 mRNA vaccination and the laboratory test day was 79 days (interquartile range, 44 to 127). A comparative analysis of these hormones before and after vaccination revealed no significant differences. Subgroup analyses based on age and reported adverse events also found no statistically significant differences. Conclusion: This study showed no significant differences in basal hormone levels (FSH, LH, and estradiol) before and after SARS-CoV-2 mRNA vaccination.

Guillain-Barré syndrome associated with SARS-CoV-2 vaccination: how is it different? a systematic review and individual participant data meta-analysis

  • Yerasu Muralidhar Reddy;Jagarlapudi MK Murthy;Syed Osman;Shyam Kumar Jaiswal;Abhinay Kumar Gattu;Lalitha Pidaparthi;Santosh Kumar Boorgu;Roshan Chavan;Bharadwaj Ramakrishnan;Sreekanth Reddy Yeduguri
    • Clinical and Experimental Vaccine Research
    • /
    • 제12권2호
    • /
    • pp.143-155
    • /
    • 2023
  • Purpose: An association between Guillain-Barré syndrome (GBS) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination has been reported. We aimed to summarize the clinical features of GBS associated with SARS-CoV-2 vaccination and determine the contrasting features from coronavirus disease-19 (COVID-19) associated GBS and GBS following other causes. Materials and Methods: We performed PubMed search for articles published between 1 December 2020 and 27 January 2022 using search terms related to "SARS-CoV-2 vaccination" and "GBS". Reference searching of the eligible studies was performed. Sociodemographic and vaccination data, clinical and laboratory features, and outcomes were extracted. We compared these findings with post-COVID-19 GBS and International GBS Outcome Study (IGOS) (GBS from other causes) cohorts. Results: We included 100 patients in the analysis. Mean age was 56.88 years, and 53% were males. Six-eight received non-replicating virus vector and 30 took messenger RNA (mRNA) vaccines. The median interval between the vaccination and the GBS onset was 11 days. Limb weakness, facial palsy, sensory symptoms, dysautonomia, and respiratory insufficiency were seen in 78.65%, 53.3%, 77.4%, 23.5%, and 25%, respectively. The commonest clinical and electrodiagnostic subtype were sensory-motor variant (68%) and acute inflammatory demyelinating polyneuropathy (61.4%), respectively. And 43.9% had poor outcome (GBS outcome score ≥3). Pain was common with virus vector than mRNA vaccine, and the latter had severe disease at presentation (Hughes grade ≥3). Sensory phenomenon and facial weakness were common in vaccination cohort than post-COVID-19 and IGOS. Conclusion: There are distinct differences between GBS associated with SARS-CoV-2 vaccination and GBS due to other causes. Facial weakness and sensory symptoms were commonly seen in the former and outcomes poor.

SARS-CoV-2-Specific T Cell Responses in Patients with COVID-19 and Unexposed Individuals

  • Min-Seok Rha;A Reum Kim;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • 제21권1호
    • /
    • pp.2.1-2.11
    • /
    • 2021
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), an ongoing pandemic disease. In the current review, we describe SARS-CoV-2-specific CD4+ and CD8+ T-cell responses in acute and convalescent COVID-19 patients. We also discuss the relationships between COVID-19 severity and SARS-CoV-2-specific T-cell responses and summarize recent reports regarding SARS-CoV-2-reactive T cells in SARS-CoV-2-unexposed individuals. These T cells may be cross-reactive cells primed by previous infection with human common-cold coronaviruses. Finally, we outline SARS-CoV-2-specific T-cell responses in the context of vaccination. A better understanding of SARS-CoV-2-specific T-cell responses is needed to develop effective vaccines and therapeutics.

T Cell Immune Responses against SARS-CoV-2 in the With Corona Era

  • Ji-Eun Oh
    • 대한의생명과학회지
    • /
    • 제28권4호
    • /
    • pp.211-222
    • /
    • 2022
  • After more than two years of efforts to end the corona pandemic, a gradual recovery is starting in countries with high vaccination rates. Easing public health policies for a full-fledged post-corona era, such as lifting the mandatory use of outdoor mask and quarantine measures in entry have been considered in Korea. However, the continuous emergence of new variants of SARS-CoV-2 and limitations in vaccine efficacy still remain challenging. Fortunately, T cells and memory T cells, which are key components of adaptive immunity appear to contribute substantially in COVID-19 control. SARS-CoV-2 specific CD4+/CD8+ T cells are induced by natural infection or vaccination, and rapid induction and activation of T cells is mainly associated with viral clearance and attenuated clinical severity. In addition, T cell responses induced by recognition of a wide range of epitopes were minimally affected and conserved against the highly infectious subsets of omicron variants. Polyfunctional SARS-CoV-2 specific T cell memory including stem cell-like memory T cells were also developed in COVID-19 convalescent patients, suggesting long lasting protective T cell immunity. Thus, a robust T-cell immune response appears to serve as a reliable and long-term component of host protection in the context of reduced efficacy of humoral immunity and persistent mutations and/or immune escape.

SARS-CoV-2 Antibody Neutralization Assay Platforms Based on Epitopes Sources: Live Virus, Pseudovirus, and Recombinant S Glycoprotein RBD

  • Endah Puji Septisetyani;Pekik Wiji Prasetyaningrum;Khairul Anam;Adi Santoso
    • IMMUNE NETWORK
    • /
    • 제21권6호
    • /
    • pp.39.1-39.18
    • /
    • 2021
  • The high virulent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that emerged in China at the end of 2019 has generated novel coronavirus disease, coronavirus disease 2019 (COVID-19), causing a pandemic worldwide. Every country has made great efforts to struggle against SARS-CoV-2 infection, including massive vaccination, immunological patients' surveillance, and the utilization of convalescence plasma for COVID-19 therapy. These efforts are associated with the attempts to increase the titers of SARS-CoV-2 neutralizing Abs (nAbs) generated either after infection or vaccination that represent the body's immune status. As there is no standard therapy for COVID-19 yet, virus eradication will mainly depend on these nAbs contents in the body. Therefore, serological nAbs neutralization assays become a requirement for researchers and clinicians to measure nAbs titers. Different platforms have been developed to evaluate nAbs titers utilizing various epitopes sources, including neutralization assays based on the live virus, pseudovirus, and neutralization assays utilizing recombinant SARS-CoV-2 S glycoprotein receptor binding site, receptor-binding domain. As a standard neutralization assay, the plaque reduction neutralization test (PRNT) requires isolation and propagation of live pathogenic SARS-CoV-2 virus conducted in a BSL-3 containment. Hence, other surrogate neutralization assays relevant to the PRNT play important alternatives that offer better safety besides facilitating high throughput analyses. This review discusses the current neutralization assay platforms used to evaluate nAbs, their techniques, advantages, and limitations.

Seroconversion rates in kidney transplant recipients following SARS-CoV-2 vaccination and its association with immunosuppressive agents: a systematic review and meta-analysis

  • Maria Riastuti Iryaningrum;Alius Cahyadi;Fachreza Aryo Damara;Ria Bandiara;Maruhum Bonar Hasiholan Marbun
    • Clinical and Experimental Vaccine Research
    • /
    • 제12권1호
    • /
    • pp.13-24
    • /
    • 2023
  • This systematic and meta-analysis aims to evaluate humoral and cellular responses to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine among kidney transplant recipients (KTRs). We conducted a systematic literature search across databases to evaluate seroconversion and cellular response rates in KTRs receiving SARS-CoV-2 vaccines. We extracted studies that assessed seroconversion rates described as the presence of antibody de novo positivity in KTRs following SARS-CoV-2 vaccination published up to January 23rd, 2022. We also performed meta-regression based on immunosuppression therapy used. A total of 44 studies involving 5,892 KTRs were included in this meta-analysis. The overall seroconversion rate following complete dose of vaccines was 39.2% (95% confidence interval [CI], 33.3%-45.3%) and cellular response rate was 41.6% (95% CI, 30.0%-53.6%). Meta-regression revealed that low antibody response rate was significantly associated with the high prevalence of mycophenolate mofetil/mycophenolic acid (p=0.04), belatacept (p=0.02), and antiCD25 induction therapy uses (p=0.04). Conversely, tacrolimus use was associated with higher antibody response (p=0.01). This meta-analysis suggests that postvaccination seroconversion and cellular response rates in KTRs are still low. And seroconversion rate was correlated with the type of immunosuppressive agent and induction therapy used. Additional doses of the SARS-CoV-2 vaccine for this population using a different type of vaccine are considered.

Anti-SARS-CoV-2 receptor binding domain antibodies after the second dose of Sinovac and AstraZeneca vaccination

  • Marisca Evalina Gondokesumo;Anita Purnamayanti;Puri Safitri Hanum;Winnie Nirmala Santosa;Ardyan Prima Wardhana;Christina Avanti
    • Clinical and Experimental Vaccine Research
    • /
    • 제12권3호
    • /
    • pp.224-231
    • /
    • 2023
  • Purpose: The Sinovac and AstraZeneca vaccines are the primary coronavirus disease 2019 vaccines in Indonesia. Antibody levels in vaccine-injected individuals will decline substantially over time, but data supporting the duration of such responses are limited. Therefore, this study aims to quantitatively evaluate antibody responses resulting from the completion of Sinovac and AstraZeneca administration in Indonesian adults. Materials and Methods: Participants were divided into two groups based on their vaccine type. Both groups were then assessed on the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (anti-SRBD) concentrations. The anti-SRBD level was measured using Elecsys anti-SARS-CoV-2 S assay and analyzed every month until 3 months after the second vaccination. Results: The results presented significant differences (p=0.000) in immunoglobulin G (IgG) titers among the vaccines' measurement duration, where all samples observed a decrease in IgG titers over time. The mean titer levels of anti-SRBD IgG in the group given Sinovac were high in the first month after vaccination and decreased by 55.7% in 3 months. AstraZeneca showed lesser immune response with a slower decline rate. Adverse effects following immunization (AEFI) showed that systemic reactions are the most reported in both vaccines, with a higher percentage in the second dose of AstraZeneca type vaccines. Conclusion: Sinovac induced more significant titers of anti-SRBD IgG 1 month after the second dose but generated fewer AEFIs. In contrast, AstraZeneca generated more AEFIs, in mild to moderate severity, but provided lower levels of anti-SRBD IgG.

Asunaprevir, a Potent Hepatitis C Virus Protease Inhibitor, Blocks SARS-CoV-2 Propagation

  • Lim, Yun-Sook;Nguyen, Lap P.;Lee, Gun-Hee;Lee, Sung-Geun;Lyoo, Kwang-Soo;Kim, Bumseok;Hwang, Soon B.
    • Molecules and Cells
    • /
    • 제44권9호
    • /
    • pp.688-695
    • /
    • 2021
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.

SARS-CoV-2 mRNA Vaccine Elicits Sustained T Cell Responses Against the Omicron Variant in Adolescents

  • Sujin Choi;Sang-Hoon Kim;Mi Seon Han;Yoonsun Yoon;Yun-Kyung Kim;Hye-Kyung Cho;Ki Wook Yun;Seung Ha Song;Bin Ahn;Ye Kyung Kim;Sung Hwan Choi;Young June Choe;Heeji Lim;Eun Bee Choi;Kwangwook Kim;Seokhwan Hyeon;Hye Jung Lim;Byung-chul Kim;Yoo-kyoung Lee;Eun Hwa Choi;Eui-Cheol Shin;Hyunju Lee
    • IMMUNE NETWORK
    • /
    • 제23권4호
    • /
    • pp.33.1-33.13
    • /
    • 2023
  • Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization. However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccine-induced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARS-CoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4+ T cells exhibited substantial responses against both ancestral and Omicron spike proteins. Notably, CD4+ T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein. The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.