• Title/Summary/Keyword: SARS coronavirus 2

Search Result 237, Processing Time 0.031 seconds

COVID-19 Drug Development

  • Kim, Seungtaek
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • Diagnostics, vaccines, and drugs are indispensable tools and control measures employed to overcome infectious diseases such as coronavirus disease 2019 (COVID-19). Diagnostic tools based on RT-PCR were developed early in the COVID-19 pandemic and were urgently required for quarantine (testing, tracing and isolation). Vaccines such as mRNA vaccines and virus-vectored vaccines were also successfully developed using new platform technologies within one year after identifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of COVID-19. Drug development has been conducted in various ways including drug repurposing, convalescent plasma therapy, and monoclonal antibody development. Among the above efforts, this review examines COVID-19 drug development along with the related and upcoming challenges.

Placental Histopathology in COVID-19-Positive Mothers

  • Sherwani, Nikita;Singh, Neha;Neral, Arvind;Jaiswal, Jyoti;Nagaria, Tripti;Khandwal, Onkar
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1098-1102
    • /
    • 2022
  • The placenta is a captivating multifunctional organ of fetal origin and plays an essential role during pregnancy by intimately connecting mother and baby. This study explicates placental pathology and information about 25 placentas collected from the mothers infected with novel coronavirus (SARS-COV-2). So far, congenital transmission of SARS-CoV-2 seems to be remarkably uncommon in spite of many cases of COVID-19 during pregnancy. Out of the 25 placental tissue samples collected, none has shown gene expression of SARS-CoV-2 when confirmed by RT-PCR. At the same time, nasal and throat swab samples collected from newborns of SARS-CoV-2-positive mothers correspondingly tested negative by RT-PCR. The shielding properties of placental barriers against viral infections from mothers to newborns remains a mystery. Major histopathological findings have been recorded as choriodecidual tissue with necrosis, intramural fibrin deposition, chorionic villi with fibrosis, and calcification. Moreover, although recent findings are insufficient to prove direct placental transmission of COVID-19, the abundance of angiotensin-converting enzymes-2 (ACE-2) on the placental surface could potentially contribute to unpleasant outcomes during pregnancy as SARS-CoV-2 gains access to human cells via ACE-2. Finally, the significance of these findings is vague and needs further study.

Ginseng and ginsenosides on cardiovascular and pulmonary diseases; Pharmacological potentials for the coronavirus (COVID-19)

  • Ajay Vijayakumar;Jong-Hoon Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.113-121
    • /
    • 2024
  • Since its outbreak in late 2019, the Coronavirus disease 2019 (COVID-19) pandemic has profoundly caused global morbidity and deaths. The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has major complications in cardiovascular and pulmonary system. The increased rate of mortality is due to delayed detection of certain biomarkers that are crucial in the development of disease. Furthermore, certain proteins and enzymes in cellular signaling pathways play an important role in replication of SARS-CoV-2. Most cases are mild to moderate symptoms, however severe cases of COVID-19 leads to death. Detecting the level of biomarkers such as C-reactive protein, cardiac troponin, creatine kinase, creatine kinaseMB, procalcitonin and Matrix metalloproteinases helps in early detection of the severity of disease. Similarly, through downregulating Renin-angiotensin system, interleukin, Mitogen-activated protein kinases and Phosphoinositide 3-kinases pathways, COVID-19 can be effectively controlled and mortality could be prevented. Ginseng and ginsenosides possess therapeutic potential in cardiac and pulmonary complications, there are several studies performed in which they have suppressed these biomarkers and downregulated the pathways, thereby inhibiting the further spread of disease. Supplementation with ginseng or ginsenoside could act on multiple pathways to reduce the level of biomarkers significantly and alleviate cardiac and pulmonary damage. Therefore, this review summarizes the potential of ginseng extract and ginsenosides in controlling the cardiovascular and pulmonary diseases by COVID-19.

Repurposing Screens of FDA-Approved Drugs Identify 29 Inhibitors of SARS-CoV-2

  • Ku, Keun Bon;Shin, Hye Jin;Kim, Hae Soo;Kim, Bum-Tae;Kim, Seong-Jun;Kim, Chonsaeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1843-1853
    • /
    • 2020
  • COVID-19, caused by the novel coronavirus SARS-CoV-2, has spread globally and caused serious social and economic problems. The WHO has declared this outbreak a pandemic. Currently, there are no approved vaccines or antiviral drugs that prevent SARS-CoV-2 infection. Drugs already approved for clinical use would be ideal candidates for rapid development as COVID-19 treatments. In this work, we screened 1,473 FDA-approved drugs to identify inhibitors of SARS-CoV-2 infection using cell-based assays. The antiviral activity of each compound was measured based on the immunofluorescent staining of infected cells using anti-dsRNA antibody. Twenty-nine drugs among those tested showed antiviral activity against SARS-CoV-2. We report this new list of inhibitors to quickly provide basic information for consideration in developing potential therapies.

Antiviral Efficacy of Pralatrexate against SARS-CoV-2

  • Bae, Joon-Yong;Lee, Gee Eun;Park, Heedo;Cho, Juyoung;Kim, Jeonghun;Lee, Jungmin;Kim, Kisoon;Kim, Jin Il;Park, Man-Seong
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.268-272
    • /
    • 2021
  • Novel coronavirus (SARS-CoV-2) has caused more than 100 million confirmed cases of human infectious disease (COVID-19) since December 2019 to paralyze our global community. However, only limited access has been allowed to COVID-19 vaccines and antiviral treatment options. Here, we report the efficacy of the anticancer drug pralatrexate against SARS-CoV-2. In Vero and human lung epithelial Calu-3 cells, pralatrexate reduced viral RNA copies of SARS-CoV-2 without detectable cytotoxicity, and viral replication was successfully inhibited in a dose-dependent manner. In a time-to-addition assay, pralatrexate treatment at almost half a day after infection also exhibited inhibitory effects on the replication of SARS-CoV-2 in Calu-3 cells. Taken together, these results suggest the potential of pralatrexate as a drug repurposing COVID-19 remedy.

Comparative study: nonsynonymous and synonymous substitution of SARS-CoV-2, SARS-CoV, and MERS-CoV genome

  • Sohpal, Vipan Kumar
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.15.1-15.7
    • /
    • 2021
  • The direction of evolution can estimate based on the variation among nonsynonymous to synonymous substitution. The simulative study investigated the nucleotide sequence of closely related strains of respiratory syndrome viruses, codon-by-codon with maximum likelihood analysis, z selection, and the divergence time. The simulated results, dN/dS > 1 signify that an entire substitution model tends towards the hypothesis's positive evolution. The effect of transition/transversion proportion, Z-test of selection, and the evolution associated with these respiratory syndromes, are also analyzed. Z-test of selection for neutral and positive evolution indicates lower to positive values of dN-dS (0.012, 0.019) due to multiple substitutions in a short span. Modified Nei-Gojobori (P) statistical technique results also favor multiple substitutions with the transition/transversion rate from 1 to 7. The divergence time analysis also supports the result of dN/dS and imparts substantiating proof of evolution. Results conclude that a positive evolution model, higher dN-dS, and transition/transversion ratio significantly analyzes the evolution trend of severe acute respiratory syndrome coronavirus 2, severe acute respiratory syndrome coronavirus, and Middle East respiratory syndrome coronavirus.

Clinical features, diagnosis, and outcomes of multisystem inflammatory syndrome in children associated with coronavirus disease 2019

  • Kwak, Ji Hee;Lee, Soo-Young;Choi, Jong-Woon;Korean Society of Kawasaki Diseasety of Pediatric Endocrinology (KSPE),
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.2
    • /
    • pp.68-75
    • /
    • 2021
  • The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been spreading worldwide since December 2019. Hundreds of cases of children and adolescents with Kawasaki disease (KD)-like hyperinflammatory illness have been reported in Europe and the United States during the peak of the COVID-19 pandemic with or without shock and cardiac dysfunction. These patients tested positive for the polymerase chain reaction or antibody test for SARS-CoV-2 or had a history of recent exposure to COVID-19. Clinicians managing such patients coined new terms for this new illness, such as COVID-19-associated hyperinflammatory response syndrome, pediatric inflammatory multisystem syndrome temporally associated with COVID-19, or COVID-19-associated multisystem inflammatory syndrome in children (MIS-C). The pathogenesis of MIS-C is unclear; however, it appears similar to that of cytokine storm syndrome. MIS-C shows clinical features similar to KD, but differences between them exist with respect to age, sex, and racial distributions and proportions of patients with shock or cardiac dysfunction. Recommended treatments for MIS-C include intravenous immunoglobulin, corticosteroids, and inotropic or vasopressor support. For refractory patients, monoclonal antibody to interleukin-6 receptor (tocilizumab), interleukin-1 receptor antagonist (anakinra), or monoclonal antibody to tumor necrosis factor (infliximab) may be recommended. Patients with coronary aneurysms require aspirin or anticoagulant therapy. The prognosis of MIS-C seemed favorable without sequelae in most patients despite a reported mortality rate of approximately 1.5%.

Detection of Antibodies Against SARS-Coronavirus Using Recombinant Truncated Nucleocapsid Proteins by ELISA

  • Lee, Hyun-Kyoung;Lee, Byoung-Hee;Dutta, Noton Kumar;Seok, Seung-Hyeok;Baek, Min-Won;Lee, Hui-Young;Kim, Dong-Jae;Na, Yi-Rang;Noh, Kyoung-Jin;Park, Sung-Hoon;Kariwa, Hiroaki;Nakauche, Mina;Mai, Le Quynh;Heo, Suk-Jin;Park, Jae-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1717-1721
    • /
    • 2008
  • Severe acute respiratory syndrome (SARS) is a life-threatening emerging respiratory disease caused by the coronavirus, SARS-CoV. The nucleocapsid (N) protein of SARS-CoV is highly antigenic and may be a suitable candidate for diagnostic applications. We constructed truncated recombinant N proteins (N1 [1-422 aa], N2 [1-109 aa], and N3 [110-422 aa]) and determined their antigenicity by Western blotting using convalescent SARS serum. The recombinants containing N1 and N3 reacted with convalescent SARS serum in Western blotting. However, the recombinant with N2 did not. In ELISA using N1 or N3 as the antigens, positive results were observed in 10 of to (100%) SARS-CoV-positive human sera. None of 50 healthy sera gave positive results in either assay. These data indicate that the ELISA using N1 or N3 has high sensitivity and specificity. These results suggest that the middle or C-terminal region of the SARS N protein is important for eliciting antibodies against SARS-CoV during the immune response, and ELISA reactions using N1 or N3 may be a valuable tool for SARS diagnosis.

Association of Lower Socioeconomic Status and SARS-CoV-2 Positivity in Los Angeles, California

  • Allan-Blitz, Lao-Tzu;Goldbeck, Cameron;Hertlein, Fred;Turner, Isaac;Klausner, Jeffrey D.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.3
    • /
    • pp.161-165
    • /
    • 2021
  • Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads heterogeneously, disproportionately impacting poor and minority communities. The relationship between poverty and race is complex, with a diverse set of structural and systemic factors driving higher rates of poverty among minority populations. The factors that specifically contribute to the disproportionate rates of SARS-CoV-2 infection, however, are not clearly understood. Methods: We evaluated SARS-CoV-2 test results from community-based testing sites in Los Angeles, California, between June and December, 2020. We used tester zip code data to link those results with United States Census report data on average annual household income, rates of healthcare coverage, and employment status by zip code. Results: We analyzed 2 141 127 SARS-CoV-2 test results, of which 245 154 (11.4%) were positive. Multivariable modeling showed a higher likelihood of SARS-CoV-2 test positivity among Hispanic communities than among other races. We found an increased risk for SARS-CoV-2 positivity among individuals from zip codes with an average annual household income