• 제목/요약/키워드: SARS coronavirus 2

Search Result 250, Processing Time 0.022 seconds

Prophetic Medicine-Nigella Sativa (Black Cumin Seeds) - Potential Herb for COVID-19?

  • Maideen, Naina Mohamed Pakkir
    • Journal of Pharmacopuncture
    • /
    • v.23 no.2
    • /
    • pp.62-70
    • /
    • 2020
  • Coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). Currently, the management of patients with COVID-19 depends mainly on repurposed drugs which include chloroquine, hydroxychloroquine, lopinavir/ritonavir, ribavirin, remdesivir, favipiravir, umifenovir, interferon-α, interferon-β and others. In this review, the potential of Nigella sativa (black cumin seeds) to treat the patients with COVID-19 analyzed, as it has shown to possess antiviral, antioxidant, anti-inflammatory, anticoagulant, immunomodulatory, bronchodilatory, antihistaminic, antitussive, antipyretic and analgesic activities. Medline/PubMed Central/PubMed, Google Scholar, Science Direct, Directory of open access journals (DOAJ) and reference lists were searched to identify articles associated with antiviral and other properties of N.sativa related to the signs and symptoms of COVID-19. Various randomized controlled trials, pilot studies, case reports and in vitro and in vivo studies confirmed that N.sativa has antiviral, antioxidant, anti-inflammatory, immunomodulatory, bronchodilatory, antihistaminic, antitussive activities related to causative oraganism and signs and symptoms of COVID-19. N. sativa could be used as an adjuvant therapy along with repurposed conventional drugs to manage the patients with COVID-19.

Korean Red Ginseng, a regulator of NLRP3 inflammasome, in the COVID-19 pandemic

  • Jung, Eui-Man;Lee, Geun-Shik
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.331-336
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) exhibits various symptoms, ranging from asymptomatic to severe pneumonia or death. The major features of patients in severe COVID-19 are the dysregulation of cytokine secretion, pneumonia, and acute lung injury. Consequently, it leads to acute respiratory distress syndrome, disseminated intravascular coagulation, multiple organ failure, and death. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19, influences nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3), the sensor of inflammasomes, directly or indirectly, culminating in the assembly of NLRP3 inflammasome and activation of inflammatory caspases, which induce the inflammatory disruption in severe COVID-19. Accordingly, the target therapeutics for inflammasome has attracted attention as a treatment for COVID-19. Korean Red Ginseng (KRG) inhibits several inflammatory responses, including the NLRP3 inflammasome signaling. This review discusses the role of KRG in the treatment and prevention of COVID-19 based on its anti-NLRP3 inflammasome efficacy.

Hyper-inflammatory responses in COVID-19 and anti-inflammatory therapeutic approaches

  • Choi, Hojun;Shin, Eui-Cheol
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.11-19
    • /
    • 2022
  • The coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with severe COVID-19 exhibit hyper-inflammatory responses characterized by excessive activation of myeloid cells, including monocytes, macrophages, and neutrophils, and a plethora of pro-inflammatory cytokines and chemokines. Accumulating evidence also indicates that hyper-inflammation is a driving factor for severe progression of the disease, which has prompted the development of anti-inflammatory therapies for the treatment of patients with COVID-19. Corticosteroids, IL-6R inhibitors, and JAK inhibitors have demonstrated promising results in treating patients with severe disease. In addition, diverse forms of exosomes that exert anti-inflammatory functions have been tested experimentally for the treatment of COVID-19. Here, we briefly describe the immunological mechanisms of the hyper-inflammatory responses in patients with severe COVID-19. We also summarize current anti-inflammatory therapies for the treatment of severe COVID-19 and novel exosome-based therapeutics that are in experimental stages.

Beyond SARS-CoV-2: Lessons That African Governments Can Apply in Preparation for Possible Future Epidemics

  • Oboh, Mary Aigbiremo;Omoleke, Semeeh Akinwale;Imafidon, Christian Eseigbe;Ajibola, Olumide;Oriero, Eniyou Cheryll;Amambua-Ngwa, Alfred
    • Journal of Preventive Medicine and Public Health
    • /
    • v.53 no.5
    • /
    • pp.307-310
    • /
    • 2020
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has placed unprecedented pressure on healthcare systems, even in advanced economies. While the number of cases of SARS-CoV-2 in Africa compared to other continents has so far been low, there are concerns about under-reporting, inadequate diagnostic tools, and insufficient treatment facilities. Moreover, proactiveness on the part of African governments has been under scrutiny. For instance, issues have emerged regarding the responsiveness of African countries in closing international borders to limit trans-continental transmission of the virus. Overdependence on imported products and outsourced services could have contributed to African governments' hesitation to shut down international air and seaports. In this era of emerging and re-emerging pathogens, we recommend that African nations should consider self-sufficiency in the health sector as an urgent priority, as this will not be the last outbreak to occur. In addition to the Regional Disease Surveillance Systems Enhancement fund (US$600 million) provided by the World Bank for strengthening health systems and disease surveillance, each country should further establish an epidemic emergency fund for epidemic preparedness and response. We also recommend that epidemic surveillance units should create a secure database of previous and ongoing pandemics in terms of aetiology, spread, and treatment, as well as financial management records. Strategic collection and analysis of data should also be a central focus of these units to facilitate studies of disease trends and to estimate the scale of requirements in preparation and response to any future pandemic or epidemic.

Distinctive Combinations of RBD Mutations Contribute to Antibody Evasion in the Case of the SARS-CoV-2 Beta Variant

  • Tae-Hun Kim;Sojung Bae;Sunggeun Goo;Jinjong Myoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1587-1594
    • /
    • 2023
  • Since its first report in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a grave threat to public health. Virus-specific countermeasures, such as vaccines and therapeutics, have been developed and have contributed to the control of the viral pandemic, which has become endemic. Nonetheless, new variants continue to emerge and could cause a new pandemic. Consequently, it is important to comprehensively understand viral evolution and the roles of mutations in viral infectivity and transmission. SARS-CoV-2 beta variant encode mutations (D614G, N501Y, E484K, and K417N) in the spike which are frequently found in other variants as well. While their individual role in viral infectivity has been elucidated against various therapeutic antibodies, it still remains unclear whether those mutations may act additively or synergistically when combined. Here, we report that N501Y mutation shows differential effect on two therapeutic antibodies tested. Interestingly, the relative importance of E484K and K417N mutations in antibody evasion varies depending on the antibody type. Collectively, these findings suggest that continuous efforts to develop effective antibody therapeutics and combinatorial treatment with multiple antibodies are more rational and effective forms of treatment.

SARS-CoV-2 mRNA Vaccine Elicits Sustained T Cell Responses Against the Omicron Variant in Adolescents

  • Sujin Choi;Sang-Hoon Kim;Mi Seon Han;Yoonsun Yoon;Yun-Kyung Kim;Hye-Kyung Cho;Ki Wook Yun;Seung Ha Song;Bin Ahn;Ye Kyung Kim;Sung Hwan Choi;Young June Choe;Heeji Lim;Eun Bee Choi;Kwangwook Kim;Seokhwan Hyeon;Hye Jung Lim;Byung-chul Kim;Yoo-kyoung Lee;Eun Hwa Choi;Eui-Cheol Shin;Hyunju Lee
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.33.1-33.13
    • /
    • 2023
  • Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization. However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccine-induced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARS-CoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4+ T cells exhibited substantial responses against both ancestral and Omicron spike proteins. Notably, CD4+ T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein. The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.

Serological response 5 months after the BNT162b2 COVID-19 vaccination in patients with various hematological disorders in Japan

  • Yoshiaki Marumo;Takashi Yoshida;Yuki Furukawa;Kenji Ina;Ayumi Kamiya;Takae Kataoka;Satoshi Kayukawa
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.319-327
    • /
    • 2023
  • Purpose: Patients with hematological malignancies are at an increased risk of severe infection with coronavirus disease 2019 (COVID-19). However, developing an adequate immune response after vaccination is difficult, especially in patients with lymphoid neoplasms. Since the long-term effects of the BNT162b2 vaccine are unclear, the humoral immune response 5 months after the two vaccinations in patients with hematological disorders was analyzed. Materials and Methods: Samples were collected from 96 patients vaccinated twice with BNT162b2 and treated with at least one line of an antitumor or immunosuppressive drug in our hospital from November 2021 to February 2022. Serum anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) spike (S) antibody titers were analyzed. Patients were age- and sex-matched using propensity matching and compared with a healthy control group. Patients with serum anti-SARS-CoV-2 S antibodies were defined as 'responder' if >50 U/mL. The patients had B-cell non-Hodgkin lymphoma (B-NHL), multiple myeloma, chronic myeloid leukemia, etc. Results: Patients had significantly low antibody levels (median, 55.3 U/mL vs. 809.8 U/mL; p<0.001) and a significantly low response rate (p<0.001). Multivariate analysis showed that patients with B-NHL, aged >72 years, were associated with a low response to vaccination. There were no significant differences between patients with chronic myeloid leukemia and healthy controls. Conclusion: Our study shows that patients with hematological disorders are at risk of developing severe COVID-19 infections because of low responsiveness to vaccination. Moreover, the rate of antibody positivity differed between the disease groups. Further studies are warranted to determine an appropriate preventive method for these patients, especially those with B-NHL.

COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19

  • Shama Mujawar;Gayatri Patil;Srushti Suthar;Tanuja Shendkar;Vaishnavi Gangadhar
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.16.1-16.14
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a viral infection produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus epidemic, which was declared a global pandemic in March 2020. The World Health Organization has recorded around 43.3 billion cases and 59.4 million casualties to date, posing a severe threat to global health. Severe COVID-19 indicates viral pneumonia caused by the SARS-CoV-2 infections, which can induce fatal consequences, including acute respiratory distress syndrome (ARDS). The purpose of this research is to better understand the COVID-19 and ARDS pathways, as well as to find targeted single nucleotide polymorphism. To accomplish this, we retrieved over 100 patients' samples from the Sequence Read Archive, National Center for Biotechnology Information. These sequences were processed through the Galaxy server next generation sequencing pipeline for variant analysis and then visualized in the Integrative Genomics Viewer, and performed statistical analysis using t-tests and Bonferroni correction, where six major genes were identified as DNAH7, CLUAP1, PPA2, PAPSS1, TLR4, and IFITM3. Furthermore, a complete understanding of the genomes of COVID-19-related ARDS will aid in the early identification and treatment of target proteins. Finally, the discovery of novel therapeutics based on discovered proteins can assist to slow the progression of ARDS and lower fatality rates.

Pregnant women's knowledge about and beliefs toward COVID-19 vaccine: a cross-sectional study

  • Osman Samet Gunkaya;Arzu Bilge Tekin;Murat Yassa;Oguz Arslan;Kubra Karakoc;Nesibe Demirtas;Canberk Usta;Cigdem Kunt Isguder;Niyazi Tug
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.2
    • /
    • pp.134-142
    • /
    • 2023
  • Purpose: The aim of this study was to determine the scope of knowledge, attitudes, and behaviors of pregnant women about the coronavirus disease 2019 (COVID-19) vaccine. Materials and Methods: A total of 886 pregnant women were recruited for the study. A cross-sectional questionnaire was conducted on these selected participants. Data about past infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV-2 infection of closely related people, and deaths due to COVID-19 among their relatives were questioned. Results: The rate of vaccination was higher (64.1%) in pregnant women with higher education levels. Informing about the vaccine, especially by health professionals, showed that the rates of vaccination (25%) increased (p<0.001). In addition, a significant increase was observed in vaccination rates with increasing age and financial income (p<0.001). Conclusion: The main limitation of our study is that the vaccine, which was approved for "emergency use", was just started to be administered to pregnant women during the study. Our findings show that our target audience, low-income, low-education, younger pregnant women should be given more attention than those who apply to the doctor for routine follow-up.

Glycogen Synthase Kinase-3 Interaction Domain Enhances Phosphorylation of SARS-CoV-2 Nucleocapsid Protein

  • Jun Seop, Yun;Hyeeun, Song;Nam Hee, Kim;So Young, Cha;Kyu Ho, Hwang;Jae Eun, Lee;Cheol-Hee, Jeong;Sang Hyun, Song;Seonghun, Kim;Eunae Sandra, Cho;Hyun Sil, Kim;Jong In, Yook
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.911-922
    • /
    • 2022
  • A structural protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), nucleocapsid (N) protein is phosphorylated by glycogen synthase kinase (GSK)-3 on the serine/arginine (SR) rich motif located in disordered regions. Although phosphorylation by GSK-3β constitutes a critical event for viral replication, the molecular mechanism underlying N phosphorylation is not well understood. In this study, we found the putative alpha-helix L/FxxxL/AxxRL motif known as the GSK-3 interacting domain (GID), found in many endogenous GSK-3β binding proteins, such as Axins, FRATs, WWOX, and GSKIP. Indeed, N interacts with GSK-3β similarly to Axin, and Leu to Glu substitution of the GID abolished the interaction, with loss of N phosphorylation. The N phosphorylation is also required for its structural loading in a virus-like particle (VLP). Compared to other coronaviruses, N of Sarbecovirus lineage including bat RaTG13 harbors a CDK1-primed phosphorylation site and Gly-rich linker for enhanced phosphorylation by GSK-3β. Furthermore, we found that the S202R mutant found in Delta and R203K/G204R mutant found in the Omicron variant allow increased abundance and hyper-phosphorylation of N. Our observations suggest that GID and mutations for increased phosphorylation in N may have contributed to the evolution of variants.