• Title/Summary/Keyword: SARS coronavirus 2

Search Result 244, Processing Time 0.022 seconds

Radiologic Abnormalities in Prolonged SARS-CoV-2 Infection: A Systematic Review

  • Kyongmin Sarah Beck;Jeong-Hwa Yoon;Soon Ho Yoon
    • Korean Journal of Radiology
    • /
    • v.25 no.5
    • /
    • pp.473-480
    • /
    • 2024
  • We systematically reviewed radiological abnormalities in patients with prolonged SARS-CoV-2 infection, defined as persistently positive polymerase chain reaction (PCR) results for SARS-CoV-2 for > 21 days, with either persistent or relapsed symptoms. We extracted data from 24 patients (median age, 54.5 [interquartile range, 44-64 years]) reported in the literature and analyzed their representative CT images based on the timing of the CT scan relative to the initial PCR positivity. Our analysis focused on the patterns and distribution of CT findings, severity scores of lung involvement on a scale of 0-4, and the presence of migration. All patients were immunocompromised, including 62.5% (15/24) with underlying lymphoma and 83.3% (20/24) who had received anti-CD20 therapy within one year. Median duration of infection was 90 days. Most patients exhibited typical CT appearance of coronavirus disease 19 (COVID-19), including ground-glass opacities with or without consolidation, throughout the follow-up period. Notably, CT severity scores were significantly lower during ≤ 21 days than during > 21 days (P < 0.001). Migration was observed on CT in 22.7% (5/22) of patients at ≤ 21 days and in 68.2% (15/22) to 87.5% (14/16) of patients at > 21 days, with rare instances of parenchymal bands in previously affected areas. Prolonged SARS-CoV-2 infection usually presents as migrating typical COVID-19 pneumonia in immunocompromised patients, especially those with impaired B-cell immunity.

Could Natural Products Confer Inhibition of SARS-CoV-2 Main Protease? In-silico Drug Discovery

  • Mohamed-Elamir F Hegazy
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.14-14
    • /
    • 2020
  • In December 2019, the COVID-19 epidemic was discovered in Wuhan, China, and since has disseminated around the world impacting human health for millions. Herein, in-silico drug discovery approaches were utilized to identify potential candidates as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. We investigated several databases including natural and natural-like products (>100,000 molecules), DrugBank database (10,036 drugs), major metabolites isolated from daily used spices (32 molecules), and current clinical drug candidates for the treatment of COVID-19 (18 drugs). All tested compounds were prepared and screened using molecular docking techniques. Based on the calculated docking scores, the top ones from each project under investigation were selected and subjected to molecular dynamics (MD) simulations followed by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. Combined long MD simulations and MM-GBSA calculations revealed the potent compounds with prospective binding affinities against Mpro. Structural and energetic analyses over the simulated time demonstrated the high stabilities of the selected compounds. Our results showed that 4-bis([1,3]dioxolo)pyran-5-carboxamide derivatives (natural and natural-like products database), DB02388 and Cobicistat (DB09065) (DrugBank database), salvianolic acid A (spices secondary metabolites) and TMC-310911 (clinical-trial drugs database) exhibited high binding affinities with SARS-CoV-2 Mpro. In conclusion, these compounds are up-and-coming anti-COVID-19 drug candidates that warrant further detailed in vitro and in vivo experimental estimations.

  • PDF

Newly diagnosed pediatric immunoglobulin A nephropathy after vaccination against SARS-CoV-2: a case report

  • Do Young Kim;Hyung Eun Yim;Min Hwa Son;Kee Hwan Yoo
    • Childhood Kidney Diseases
    • /
    • v.26 no.2
    • /
    • pp.91-96
    • /
    • 2022
  • The messenger RNA-based vaccine for the coronavirus disease 2019 (COVID-19) may induce glomerulonephritis, including immunoglobulin A nephropathy (IgAN). New-onset IgAN triggered by vaccination against COVID-19 has been reported rarely, especially in children. Herein, we report a pediatric case of newly diagnosed IgAN after administration of the Pfizer vaccine for COVID-19. A 12-year-old girl was referred to our hospital for evaluation of gross hematuria after inoculation with the second dose of Pfizer's COVID-19 vaccine; she had no adverse effects after the first dose. At the time of admission, she showed heavy proteinuria and persistent hematuria. Kidney biopsy revealed an IgAN, and she was treated with an oral steroid and an angiotensin-converting enzyme inhibitor. Four months after discharge, the proteinuria and hematuria resolved completely.

Analysis of Research Trends about COVID-19: Focusing on Medicine Journals of MEDLINE in Korea (COVID-19 관련 연구 동향에 대한 분석 - MEDLINE 등재 국내 의학 학술지를 중심으로 -)

  • Mijin Seo;Jisu Lee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.34 no.3
    • /
    • pp.135-161
    • /
    • 2023
  • This study analyzed the research trends of COVID-19 research papers published in medical journals of Korea. Data were collected from 25 MEDLINE journals in 'Medicine and Pharmacy' studies and a total of 800 were selected. As a result of the study, authors from domestic affiliations made up 76.96% of the total, and the proportion of authors from foreign institutions decreased without significant change. The authors' majors were 'Internal Medicine' (32.85%), 'Preventive Medicine/Occupational and Environmental Medicine' (16.23%), 'Radiology' (5.74%), and 'Pediatrics' (5.50%), and 435 (54.38%) papers were collaborative research. As for author keywords, 'COVID19' (674), 'SARSCoV2' (245), 'Coronavirus' (81), and 'Vaccine' (80) were derived as top keywords. There were six words that appeared throughout the entire period: 'COVID19,' 'SARSCoV2,' 'Coronavirus,' 'Korea,' 'Pandemic,' and 'Mortality.' Co-occurrence network analysis was conducted on MeSH terms and author keywords, and common keywords such as 'covid-19,' 'sars-cov-2,' and 'public health' were derived. In topic modeling, five topics were identified, including 'Vaccination,' 'COVID-19 outbreak status,' 'Omicron variant,' 'Mental health, control measures,' and 'Transmission and control in Korea.' Through this study, it was possible to identify the research areas and major keywords by year of COVID-19 research papers published during the 'Public Health Emergency of International Concern (PHEIC).'

Comparative analysis of antibody responses to BNT162b2, ChAdOx1, and CoronaVac vaccines in the Albanian population over the pandemic years 2021 to 2022

  • Genc Sulcebe;Margarita Kurti-Prifti;Erkena Shyti;Jonida Dashi-Pasholli;Fabian Cenko;Alban Ylli
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.1
    • /
    • pp.63-67
    • /
    • 2024
  • This repeated cross-sectional study with two independent sample populations compared the antibody response to severe acute respiratory syndrome coronavirus 2 vaccines in Albania in July-August 2021 and 2022. In 2021, it found higher anti-spike-1 seropositivity and antibody levels in fully vaccinated individuals, especially with BNT162b2 and ChAdOx1 and to a lesser degree with CoronaVac. By 2022, all single-dose recipients showed high antibody responses, suggesting natural infection-enhanced immunity. The study indicates a significant evolution in the antibody response to different coronavirus disease 2019 vaccines and suggests that a single vaccine dose, coupled with natural infection, might suffice to maintain adequate immunity levels in an endemic scenario.

Prophetic Medicine-Nigella Sativa (Black Cumin Seeds) - Potential Herb for COVID-19?

  • Maideen, Naina Mohamed Pakkir
    • Journal of Pharmacopuncture
    • /
    • v.23 no.2
    • /
    • pp.62-70
    • /
    • 2020
  • Coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). Currently, the management of patients with COVID-19 depends mainly on repurposed drugs which include chloroquine, hydroxychloroquine, lopinavir/ritonavir, ribavirin, remdesivir, favipiravir, umifenovir, interferon-α, interferon-β and others. In this review, the potential of Nigella sativa (black cumin seeds) to treat the patients with COVID-19 analyzed, as it has shown to possess antiviral, antioxidant, anti-inflammatory, anticoagulant, immunomodulatory, bronchodilatory, antihistaminic, antitussive, antipyretic and analgesic activities. Medline/PubMed Central/PubMed, Google Scholar, Science Direct, Directory of open access journals (DOAJ) and reference lists were searched to identify articles associated with antiviral and other properties of N.sativa related to the signs and symptoms of COVID-19. Various randomized controlled trials, pilot studies, case reports and in vitro and in vivo studies confirmed that N.sativa has antiviral, antioxidant, anti-inflammatory, immunomodulatory, bronchodilatory, antihistaminic, antitussive activities related to causative oraganism and signs and symptoms of COVID-19. N. sativa could be used as an adjuvant therapy along with repurposed conventional drugs to manage the patients with COVID-19.

Korean Red Ginseng, a regulator of NLRP3 inflammasome, in the COVID-19 pandemic

  • Jung, Eui-Man;Lee, Geun-Shik
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.331-336
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) exhibits various symptoms, ranging from asymptomatic to severe pneumonia or death. The major features of patients in severe COVID-19 are the dysregulation of cytokine secretion, pneumonia, and acute lung injury. Consequently, it leads to acute respiratory distress syndrome, disseminated intravascular coagulation, multiple organ failure, and death. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19, influences nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3), the sensor of inflammasomes, directly or indirectly, culminating in the assembly of NLRP3 inflammasome and activation of inflammatory caspases, which induce the inflammatory disruption in severe COVID-19. Accordingly, the target therapeutics for inflammasome has attracted attention as a treatment for COVID-19. Korean Red Ginseng (KRG) inhibits several inflammatory responses, including the NLRP3 inflammasome signaling. This review discusses the role of KRG in the treatment and prevention of COVID-19 based on its anti-NLRP3 inflammasome efficacy.

Hyper-inflammatory responses in COVID-19 and anti-inflammatory therapeutic approaches

  • Choi, Hojun;Shin, Eui-Cheol
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.11-19
    • /
    • 2022
  • The coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with severe COVID-19 exhibit hyper-inflammatory responses characterized by excessive activation of myeloid cells, including monocytes, macrophages, and neutrophils, and a plethora of pro-inflammatory cytokines and chemokines. Accumulating evidence also indicates that hyper-inflammation is a driving factor for severe progression of the disease, which has prompted the development of anti-inflammatory therapies for the treatment of patients with COVID-19. Corticosteroids, IL-6R inhibitors, and JAK inhibitors have demonstrated promising results in treating patients with severe disease. In addition, diverse forms of exosomes that exert anti-inflammatory functions have been tested experimentally for the treatment of COVID-19. Here, we briefly describe the immunological mechanisms of the hyper-inflammatory responses in patients with severe COVID-19. We also summarize current anti-inflammatory therapies for the treatment of severe COVID-19 and novel exosome-based therapeutics that are in experimental stages.

Beyond SARS-CoV-2: Lessons That African Governments Can Apply in Preparation for Possible Future Epidemics

  • Oboh, Mary Aigbiremo;Omoleke, Semeeh Akinwale;Imafidon, Christian Eseigbe;Ajibola, Olumide;Oriero, Eniyou Cheryll;Amambua-Ngwa, Alfred
    • Journal of Preventive Medicine and Public Health
    • /
    • v.53 no.5
    • /
    • pp.307-310
    • /
    • 2020
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has placed unprecedented pressure on healthcare systems, even in advanced economies. While the number of cases of SARS-CoV-2 in Africa compared to other continents has so far been low, there are concerns about under-reporting, inadequate diagnostic tools, and insufficient treatment facilities. Moreover, proactiveness on the part of African governments has been under scrutiny. For instance, issues have emerged regarding the responsiveness of African countries in closing international borders to limit trans-continental transmission of the virus. Overdependence on imported products and outsourced services could have contributed to African governments' hesitation to shut down international air and seaports. In this era of emerging and re-emerging pathogens, we recommend that African nations should consider self-sufficiency in the health sector as an urgent priority, as this will not be the last outbreak to occur. In addition to the Regional Disease Surveillance Systems Enhancement fund (US$600 million) provided by the World Bank for strengthening health systems and disease surveillance, each country should further establish an epidemic emergency fund for epidemic preparedness and response. We also recommend that epidemic surveillance units should create a secure database of previous and ongoing pandemics in terms of aetiology, spread, and treatment, as well as financial management records. Strategic collection and analysis of data should also be a central focus of these units to facilitate studies of disease trends and to estimate the scale of requirements in preparation and response to any future pandemic or epidemic.

Distinctive Combinations of RBD Mutations Contribute to Antibody Evasion in the Case of the SARS-CoV-2 Beta Variant

  • Tae-Hun Kim;Sojung Bae;Sunggeun Goo;Jinjong Myoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1587-1594
    • /
    • 2023
  • Since its first report in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a grave threat to public health. Virus-specific countermeasures, such as vaccines and therapeutics, have been developed and have contributed to the control of the viral pandemic, which has become endemic. Nonetheless, new variants continue to emerge and could cause a new pandemic. Consequently, it is important to comprehensively understand viral evolution and the roles of mutations in viral infectivity and transmission. SARS-CoV-2 beta variant encode mutations (D614G, N501Y, E484K, and K417N) in the spike which are frequently found in other variants as well. While their individual role in viral infectivity has been elucidated against various therapeutic antibodies, it still remains unclear whether those mutations may act additively or synergistically when combined. Here, we report that N501Y mutation shows differential effect on two therapeutic antibodies tested. Interestingly, the relative importance of E484K and K417N mutations in antibody evasion varies depending on the antibody type. Collectively, these findings suggest that continuous efforts to develop effective antibody therapeutics and combinatorial treatment with multiple antibodies are more rational and effective forms of treatment.