• 제목/요약/키워드: SAR processing

검색결과 205건 처리시간 0.022초

ATM/AAL 처리를 위한 재조립 처리기의 설계 및 VLSI 구현 (Design and VLSI Implementation of Reassembly Controller for ATM/AAL Layer)

  • 박경철;심영석
    • 대한전자공학회논문지SD
    • /
    • 제40권5호
    • /
    • pp.369-378
    • /
    • 2003
  • 본논문은 ATM/AAL 처리를 위한 재조립 처리기으 설계 및 VLSI 구현에 대하여 기술한다. ATM/AAL 재조립 처리기는 물리계층으로부터 수신된 ATM셀을 처리하는 장치로서 AAL5 패킷의 유료부하를 호스트의 메모리에 정렬하고 이를 전송하며 망 관련 정보와 패킷의 오류 사항을 점검한다. ATM 셀매칭 알고리즘과 지능형 분산 방식의 개념을 적용하여 여러 개의 채널을 동시에 운영할 때 시간 지연 없이 처리할 수 있도록 설계하였다. 셀매칭 알고리즘은 ATM의 헤더로부터 해당정보의 위치를 신속하게 찾을 수 있도록 해쉬함수를 이용하여 구현되었고 이로써 VCI/VPI 값의 할당에 있어서 시간상의 제약을 완화하였으며 지능형 분산 방식과 DMA를 이용하여 메모리의 낭비를 최소화하면서 데이터를 호스트 쪽으로 25Mbps의 속도로 전송이 가능하도록 하였다. 상용시스템과 통신을 수행하여 칩의 정확한 동작과 CRC, 오류 점검 등의 동작을 점검하였다. 본 재조립 처릭는 0.6㎛ CMOS 공정을 통하여 제작되었다.

Sentinel-1 및 Sentinel-2 위성영상기반 식생지수를 활용한 용담댐 유역의 토양수분 산정 (Soil moisture estimation of YongdamDam watershed using vegetation index from Sentinel-1 and -2 satellite images)

  • 손무빈;정지훈;이용관;우소영;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.161-161
    • /
    • 2021
  • 본 연구에서는 금강 상류의 용담댐 유역(930.0 km2)을 대상으로 Sentinel-1 SAR(Synthetic Aperture Radar) 및 Sentinel-2 MultiSpectral Instrument(MSI) 위성영상을 활용한 토양수분 산출연구를 수행하였다. 연구에 사용된 자료는 10 m 해상도의 Sentinel-1 IW(Interferometric Wide swath) mode GRD(Ground Range Detected) product의 VV(Vertical transmit-Vertical receive) 및 VH(Vertical transmit-Horizontal receive) 편파자료와 Sentinel-2 Level-2A Bottom of Atmosphere(BOA) reflectance 자료를 2019년에 대해 각 6일 및 5일 간격으로 구축하였다. 위성영상의 Image processing은 SNAP(SentiNel Application Platform)을 활용하여 Sentinel-1 영상의 편파 별(VV, VH) 후방산란계수와 Sentinel-2의 적색(Band-4) 및 근적외(Band-8) 영상을 생성하였다. 토양수분 산출 모형은 다중선형회귀모형(Multiple Linear Regression Model)을 활용하였으며, 각 지점에 해당하는 토양 속성별로 모형을 생성하였다. 모형의 입력자료는 Sentinel-1 위성의 편파별 후방산란계수, Sentinel-1 위성에서 산출된 식생지수 RVI(Radar Vegetation Index)와 Sentinel-2 위성에서 산출된 NDVI(Normalized Difference Vegetation Index)를 활용하여 식생의 영향을 반영하고자 하였다. 모의 된 토양수분을 검증하기 위해 6개 지점의 TDR(Time Domain Reflectometry) 기반 실측 토양수분 자료를 수집하고, 상관계수(Correlation Coefficient, R), 평균제곱근오차(Root Mean Square Error, RMSE) 및 IOA(Index of Agreement)를 활용하여 전체 기간 및 계절별로 나누어 검증할 예정이다.

  • PDF

Inhalation Configuration Detection for COVID-19 Patient Secluded Observing using Wearable IoTs Platform

  • Sulaiman Sulmi Almutairi;Rehmat Ullah;Qazi Zia Ullah;Habib Shah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권6호
    • /
    • pp.1478-1499
    • /
    • 2024
  • Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. COVID-19 become an active epidemic disease due to its spread around the globe. The main causes of the spread are through interaction and transmission of the droplets through coughing and sneezing. The spread can be minimized by isolating the susceptible patients. However, it necessitates remote monitoring to check the breathing issues of the patient remotely to minimize the interactions for spread minimization. Thus, in this article, we offer a wearable-IoTs-centered framework for remote monitoring and recognition of the breathing pattern and abnormal breath detection for timely providing the proper oxygen level required. We propose wearable sensors accelerometer and gyroscope-based breathing time-series data acquisition, temporal features extraction, and machine learning algorithms for pattern detection and abnormality identification. The sensors provide the data through Bluetooth and receive it at the server for further processing and recognition. We collect the six breathing patterns from the twenty subjects and each pattern is recorded for about five minutes. We match prediction accuracies of all machine learning models under study (i.e. Random forest, Gradient boosting tree, Decision tree, and K-nearest neighbor. Our results show that normal breathing and Bradypnea are the most correctly recognized breathing patterns. However, in some cases, algorithm recognizes kussmaul well also. Collectively, the classification outcomes of Random Forest and Gradient Boost Trees are better than the other two algorithms.

다목적실용위성 영상처리 및 활용 (KOMPSAT Image Processing and Application)

  • 이광재;김예슬;채성호;오관영;이선구
    • 대한원격탐사학회지
    • /
    • 제38권6_4호
    • /
    • pp.1871-1877
    • /
    • 2022
  • 과거 위성개발에는 막대한 예산과 시간이 소요됨에 따라 일부 선진국만 위성을 보유하였으나, 최근 초소형위성과 같은 저예산 위성이 등장함에 따라 전 세계 많은 국가들이 위성 개발에 참여하고 있다. 저궤도 및 정지궤도 위성은 환경 및 기상 감시, 정밀변화탐지, 재난 등 다양한 분야에서 활용되고 있으며, 최근에는 딥러닝 기반의 관심 객체탐지 등을 통한 모니터링에도 활발히 이용되고 있다. 우리나라는 지금까지 우주개발계획에 따라 국가 수요의 위성을 개발하여 왔으며, 이를 통해 획득한 위성영상은 공공 및 민간에서 다양한 목적으로 활용되고 있다. 국내에서 위성영상에 대한 관심은 지속적으로 증가하고 있으며, 각종 아이디어 발굴 및 기술개발 촉진을 위한 다양한 경진대회도 개최되고 있다. 본 특별호에서는 최근 개최된 2022 위성정보활용 경진대회에 참여한 주제와 다목적실용위성 영상자료 처리 및 활용 연구에 대해서 소개하고자 한다.

광학 영상의 구름 제거를 위한 조건부 생성적 적대 신경망과 회귀 기반 보정의 결합 (Combining Conditional Generative Adversarial Network and Regression-based Calibration for Cloud Removal of Optical Imagery)

  • 곽근호;박소연;박노욱
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1357-1369
    • /
    • 2022
  • 구름 제거는 식생 모니터링, 변화 탐지 등과 같은 광학 영상이 필요한 모든 작업에서 필수적인 영상 처리 과정이다. 이 논문에서는 조건부 생성적 적대 신경망(conditional generative adversarial networks, cGANs)과 회귀 기반 보정을 결합하여 구름이 없는 시계열 광학 영상 세트를 구성하는 2단계의 구름 제거 기법을 제안하였다. 첫 번째 단계에서는 광학 영상과 synthetic aperture radar 영상 간 정량적 관계를 이용하는 cGANs을 이용하여 초기 예측 결과를 생성한다. 두 번째 단계에서는 구름이 아닌 영역에서 예측 결과와 실제 값과의 관계를 random forest 기반 회귀 모델링을 통해 정량화한 후에 cGANs 기반 예측 결과를 보정한다. 제안 기법은 김제의 벼 재배지에서 Sentinel-2 영상과 COSMO-SkyMed 영상을 이용한 구름 제거 실험을 통해 적용 가능성을 평가하였다. cGAN 모델은 구름 영역에서 지표면 상태의 급격한 변화가 발생하는 논 재배지를 대상으로 반사율 값을 효과적으로 예측할 수 있었다. 또한 두 번째 단계의 회귀 기반 보정은 예측 대상 영상에서 시간적으로 떨어진 보조 영상을 이용하는 회귀 기반 구름 제거 기법에 비해 예측 정확도를 향상시킬 수 있었다. 이러한 실험 결과는 구름이 없는 광학 영상을 환경 모니터링에 이용할 수 없는 경우 제안된 방법이 구름 오염 지역을 복원하는데 효과적으로 적용될 수 있음을 나타낸다.