• Title/Summary/Keyword: SAR imaging

Search Result 123, Processing Time 0.023 seconds

SAR Test-bed to Acquire Raw Data and Form Real-time Image (실시간 영상형성 및 원시데이터 획득용 SAR 테스트 베드)

  • Shin, Hyun-Ik;Kwon, Kyoung-Il;Yoon, Sang-Ho;Kim, Hyung-Suk;Hwang, Jeonghun;Ko, Young-Chang;You, Eung-Noh;Kim, Jin-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.181-186
    • /
    • 2017
  • Synthetic aperture radar(SAR) has been widely used for reconnaissance. It provides high-resolution, day-and-night and weather-independent images for a multitude of applications. Because SAR coherently combines many viewing angles to effectively create a large aperture(narrow beam) radar, the test-bed should be capable of moving straightly SAR sensor for the integration angle to meet resolution. This paper describes the test-bed developed to test and evaluate the SAR performance. It forms high-quality images in real time and saves the raw data for the purpose of post processing on the ground.

Development of High Resolution SAR(NexSAR) with 30 cm Resolution (분해능 30 cm급의 고해상도 SAR(NexSAR) 개발)

  • Kong, Young-Kyun;Kim, Hyung-Chul;Kim, Seung-Hwan;Kim, Soo-Bum;Yim, Jae-Hag
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.183-192
    • /
    • 2009
  • SAR(Synthetic Aperture Radar) is an all-weather imaging radar and is widely used in military and civil application. Especially high-resolution SAR images are very important in military purpose because it can be used at target recognition application. LIG Nex1 developed a SAR system called NexSAR with bandwidth of 600 MHz and resolution of 30 cm to obtain technologies required for high-resolution SAR. To achieve 600 MHz bandwidth of waveform generator, two DDSs are used and its output signals are SSB modulated. And deramp technique is used to reduce the sampling rate of ADC at high resolution mode. NexSAR has stripmap and spotlight modes and its functionality and performances are evaluated through ground and flight tests.

Multi-Channel High Speed Data Link Design for Small SAR Satellite Image Data Transmission

  • Kwag, Young K.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1436-1439
    • /
    • 2002
  • In this paper, based on the data link model characterized by the spaceborne small SAR system, the high rate multi-channel data link module is designed including link storage, link processor, transmitter, and wide-angle antenna. The design results are presented with the performance analysis on the data link budget as well as the multi-mode data rate in association with the SAR imaging mode of operation from high resolution to the wide swath.

  • PDF

PHASE-EXTENST10N INVERSE FILTERING ON REAL SAR IMAGES (실제 SAR 영상에 대한 위상 확장 역필터링의 적용)

  • Do, Dae-Won;Song, Woo-Jin;Kwon, Jun-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.547-550
    • /
    • 2001
  • Through matched filtering synthetic aperture radar (SAR) produces high-resolution imagery from data collected by a relative small antenna. While the impulse response obtained by the matched filter approach produces the best achievable signal-to-noise ratio, large sidelobes must be reduced to obtain higher-resolution SAR images. So, many enhancement methods of SAR imagery have been proposed. As a deconvolution method, the phase-extension inverse filtering is based on the characteristics of the matched filtering used in SAR imaging. It improves spatial resolution as well as effectively suppresses the sidelobes with low computational complexity. In the phase-extension inverse filtering, the impulse response is obtained from simulation with a point target. But in a real SAR environment, for example ERS-1, the impulse response is distorted by many non-ideal factors. So, in the phase-extension inverse filtering for a real SAR processing, the magnitudes of the frequency transfer function have to be compensated to produce more desirable results. In this paper, an estimation method to obtain a more accurate impulse response from a real SAR image is studied. And a compensation scheme to produce better performance of the phase-extension inverse filtering is also introduced.

  • PDF

A New Medical Lead for Various MRI Systems (다양한 MRI 시스템에서 사용가능한 의료용 리드선)

  • Kim, Hongjoon;Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.429-432
    • /
    • 2015
  • Radio Frequency (RF) coils in Magnetic Resonance Imaging (MRI) systems interact with a patient's tissues, resulting in the absorption of RF energy by the tissues. The presence of an electrically conducting medical implant may concentrate the RF energy and causes tissue heating near the implant devices. Here we present a novel design for a medical lead to reduce this undesired heating. Specific Absorption Rate (SAR), an indicator of heating, was calculated. Remcom XFdtd software was used to calculate the peak SAR distribution (1g and 10 g) in a realistic model of the human body. The model contained a medical lead that was exposed to RF magnetic fields at 64 MHz (1.5 T MRI), 128 MHz (3 T MRI) and 300 MHz (7 T MRI) using a model of an MR birdcage body coil. Our results demonstrate that, our proposed design of adding nails to the medical lead can significantly reduce the SAR for different MRI systems.

Performance Analysis of Quad-pol SAR System for Wide-Swath Operation Mode (광역관측 운용 모드에 대한 Quad-pol SAR 시스템의 성능 분석)

  • Lim, Jung-Hwan;Yoon, Seong Sik;Lee, Jae-Wook;Lee, Taek-Kyung;Ryu, Sang-Burm;Lee, Hyeon-Cheol;Lee, Sang-Gyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.141-151
    • /
    • 2019
  • In this study, we propose a performance analysis of a quadrature-polarimetric(quad-pol) synthetic aperture radar(SAR) system for wide-swath operation mode and compare it with a single-pol system based on the operation mode. To achieve a shorter revisit time for an SAR satellite, we must observe a wide area, and two SAR operation modes exist for this purpose, which are called ScanSAR and SweepSAR. In general, a quad-pol SAR system can obtain a greater variety of information about a target than a single-pol system. Because this system affects system performance parameters, analyzing these effects is required. Based on a performance analysis of the wide-swath quad-pol SAR system, the system parameters and appropriate operation mode can be selected to satisfy the performance requirements.

Image Fusion of High Resolution SAR and Optical Image Using High Frequency Information (고해상도 SAR와 광학영상의 고주파 정보를 이용한 다중센서 융합)

  • Byun, Young-Gi;Chae, Tae-Byeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.75-86
    • /
    • 2012
  • Synthetic Aperture Radar(SAR) imaging system is independent of solar illumination and weather conditions; however, SAR image is difficult to interpret as compared with optical images. It has been increased interest in multi-sensor fusion technique which can improve the interpretability of $SAR^{\circ\circ}$ images by fusing the spectral information from multispectral(MS) image. In this paper, a multi-sensor fusion method based on high-frequency extraction process using Fast Fourier Transform(FFT) and outlier elimination process is proposed, which maintain the spectral content of the original MS image while retaining the spatial detail of the high-resolution SAR image. We used TerraSAR-X which is constructed on the same X-band SAR system as KOMPSAT-5 and KOMPSAT-2 MS image as the test data set to evaluate the proposed method. In order to evaluate the efficiency of the proposed method, the fusion result was compared visually and quantitatively with the result obtained using existing fusion algorithms. The evaluation results showed that the proposed image fusion method achieved successful results in the fusion of SAR and MS image compared with the existing fusion algorithms.

Design and Fabrication of X-band Broadband Array Antenna for SAR Applications (SAR를 위한 X-band 광대역 배열 안테나의 설계 및 제작)

  • Won, Young-Jin;Lee, Young-Ju;Kong, Young-Kyun;Kim, Young-Soo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.317-322
    • /
    • 2005
  • Synthetic Aperture Radars(SAR) are used mainly for high-resolution imaging of the terrain. This paper describes the 16$\times$16 array antenna designed for an X-band, automobile-based SAR(AutoSAR) system. This antenna has the structure of several layers such as radome, radiators, slots, feed network, and honeycomb cores. Each layer is adhesively bonded to meet different combination of structural and electrical design requirements. Using the Strip-Slot-Foam-Inverted-Patch(SSFIP) structure and dogbone slots, a wide bandwidth and a structural hardness were achieved. Measurement results were compared with simulation results. It was observed that the SAR antenna had a bandwidth of 1.7 GHz, side-lobe levels of less than -20 dB, half-power beamwidth of 5$^{\circ}$, and gains of 25.0 dBi. The observed results show that the designed array antenna is suitable for the broadband AutoSAR system.

  • PDF

Oceanic Variables extracted from Along-Track Interferometric SAR Data

  • Kim, Duk-Jin;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.429-434
    • /
    • 2002
  • The Synthetic Aperture Radar (SAR) data are considered to contain the greatest amount of information among various microwave techniques developed for measuring ocean variables from aircraft or satellites. They have the potential of measuring wavelength, wave direction and wave height of the ocean waves. But, it is difficult to retrieve significant ocean wave heights and surface current from conventional SAR data, since the imaging mechanism of ocean waves by a SAR is determined by the three basic modulation processes arise through the tilt modulation, hydrodynamic modulation and velocity bunching which are poorly known functions. Along-Track Interferometric (ATI) SAR systems can directly detect the Doppler shift associated with each pixel of a SAR image and have been used to estimate wave fields and surface currents. However, the Doppler shift is not simply proportional to the component of the mean surface current. It includes also contributions associated with the phase velocity of the Brags waves and orbital motions of all ocean waves that are longer than Brags waves. In this paper, we have developed a new method for extracting the surface current vector using multiple-frequency (L- & C-band) ATI SAR data, and have generated surface wave height information.

  • PDF

Imaging Method for Array Structured Bistatic Ground-to-Air Radar (배열 구조 바이스태틱 지대공 레이다의 이미징 기법)

  • Choi, Sang-Hyun;Yang, Dong-Hyeuk;Song, Ji-Min;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.599-607
    • /
    • 2018
  • This paper presents a ground-to-air bistatic radar system and its implementation algorithm, which resembles an SAR(synthetic aperture radar) reconstruction algorithm. Via cooperative working between a standoff transmitting radar and an array of ground based receiving radars, it detects and images moving targets under clutter in the air. In the proposed system, the whole receiving antenna aperture is synthesized by physical ground based radars, and thus, unlike conventional SAR, it does not require long illumination time of the target area. The reconstruction algorithm uses planewave approximation based polar format processing, which alleviates the requirement of positioning the receiving radars, which can cause grating lobes if not chosen properly. We derive a reconstruction algorithm including clutter suppression and discuss implementation issues, such as the resolution of a reconstructed image and the method of compensation for the irregularity of the receiving radars' positions. A simulation that validates the proposed algorithm is also shown.