• Title/Summary/Keyword: SAR

Search Result 1,725, Processing Time 0.031 seconds

The Relationship between Image Parameters and SAR for Each Sequence of MRI (MRI 검사의 시퀀스 별 영상 변수와 SAR의 관계)

  • Seong-Ho Kim;Se-Jong Yoo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1133-1138
    • /
    • 2023
  • This study analyzed the relationship between image parameters and specific absorption rate (SAR) in various sequence environments to optimize SAR. For this purpose, image parameters were adjusted for T2, T1, STIR, T1 FLAIR, and T2 FLAIR sequences in a 3.0T MRI, and the whole body (WB) SAR and head SAR calculated by the device were measured. Then, the SAR was evaluated by adjusting the number of images and the flip angle (FA) of the refocusing RF. As a result, SAR increased as the number of image increased in all sequences. T1 and T1 FLAIR had correlation coefficients (r) of 0.876, 0.876 (WB SAR, head SAR), 0.867, 0.867 (WB SAR, head SAR), respectively, and STIR had the highest correlation with 0.898 and 0.899 (WB SAR, head SAR). showed (p<0.05). When applied by increasing the refocusing FA, WB SAR and head SAR increased overall in all sequences. The T1 and T2 sequences showed high correlation with correlation coefficients (r) of 0.897, 0.898 (WB SAR, head SAR) and 0.914, 0.915 (WB SAR, head SAR), respectively, while the sequences to which the inversion recovery technique was applied had relatively low FA, showed less sensitivity to increase. Therefore, in a sequence with a relatively low TR, minimizing the number of image and applying the fast spin echo to reduce the refocusing FA in a sequence with a high duty cycle are effective in reducing SAR.

Current Trends of the Synthetic Aperture Radar (SAR) Satellite Development and Future Strategy for the High Resolution Wide Swath (HRWS) SAR Satellite Development (SAR(Synthetic Aperture Radar) 위성 개발현황 및 향후 HRWS(High Resolution Wide Swath) SAR 위성 개발전략)

  • Ko, Ungdai;Seo, Inho;Lee, Juyoung;Jeong, Hyunjae
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.337-355
    • /
    • 2021
  • This paper is made to suggest a future strategy for the Korean High Resolution Wide Swath Synthetic Aperture Radar (HRWS SAR) satellite development by surveying the current trends for the SAR satellite technologies. From the survey, the latest SAR technology trends are revealed of using Digital Beam-Forming (DBF), SCan-On-Receive (SCORE), Displaced Phase Center Antenna (DPCA), interferometry, and polarimetry for exploiting the SAR imagery. Based on the latest SAR technology trends and the foreign HRWS SAR development cases, the strategy for the future HRWS Korean SAR satellite development is suggested to develop the DPCA and SCORE technologies by using the KOrea Multi-Purpose SATellite-6 (KOMPSAT-6) which is going to launch in a few years, and consequently to develop the HRWS SAR satellites which can monitor the whole Earth at weekly intervals.

Development a GB-SAR (I) : System Configuration and Interferometry (GB-SAR의 개발 (I) : 시스템 구성과 간섭기법)

  • Lee, Hoon-Yol;Sung, Nak-Hoon;Kim, Jung-Ho;Cho, Seong-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.237-245
    • /
    • 2007
  • GB-SAR (Ground-Based Synthetic Aperture Radar) system is an imaging radar that obtains high resolution 2-D image through a synthetic aperture effect from the accurate linear-motion control of antenna on the ground. The highly versatile system configurations and accurate repeatability of GB-SAR operation allow one to accurately monitor the stability of surface scatterers with millimeter accuracy by SAR interferometry. In this paper we introduce the development of a GB-SAR system and show the possibilities of SAR polarimetry and interferometry such as DInSAR, Cross-Track InSAR, Delta-f InSAR, and PSInSAR.

Ground-Based Rotational SAR System for Field-Experiments (지상 운용 회전형 SAR 시험용 시스템 연구)

  • Hwang, Ji-Hwan;Kwon, Soon-Gu;Shin, Jong-Chul;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1092-1100
    • /
    • 2011
  • A C-band ground-based rotational SAR system is presented in this paper. The rotaional SAR system is a test-bed for future rotational SAR systems which can be deployed in space and on a tower. The test-bed system is designed for imaging the electromagnetic scattering from earth surfaces and buried targets. This paper also presents the examination results of the generated SAR images. This rotational SAR system is basically consisted of the network-analyzer based HPS(Hongik Polarimetric Scatterometer) and a horizontally rotating arm. Several SAR images were obtained using the rotational SAR system for various target areas. To verify this system, we simulated the SAR images for the rotational SAR using the FDTD algorithm and compared between the measured and simulated SAR images. The rotational SAR system is operated at the center frequency of 5 GHz and various frequency bandwidth within 0.5~2 GHz to change the resolution of SAR images.

Brief Overview on Design Techniques and Architectures of SAR ADCs

  • Park, Kunwoo;Chang, Dong-Jin;Ryu, Seung-Tak
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.99-108
    • /
    • 2021
  • Successive Approximation Register (SAR) Analog-to-Digital Converters (ADC) seem to become the hottest ADC architecture during the past decade in implementing energy-efficient high performance ADCs. In this overview, we will review what kind of circuit techniques and architectural advances have contributed to place the SAR ADC architecture at its current position, beginning from a single SAR ADC and moving to various hybrid architectures. At the end of this overview, a recently reported compact and high-speed SAR-Flash ADC is introduced as one design example of SAR-based hybrid ADC architecture.

Experimental Study on DEM Extraction Using InSAR and 3-Pass DInSAR Processing Techniques (InSAR 및 3-Pass DInSAR 처리기법을 적용한 DEM 추출에 대한 실험 연구)

  • Bae, Sang-Woo;Lee, Jin-Duk
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.3
    • /
    • pp.176-186
    • /
    • 2007
  • As SAR data have the strong point that is not influenced by weather or light amount in comparison with optical sensor data, they are highly useful for temporary analysis and can be collected in time of unforeseen circumstances like disaster. This study is to extract DEM from L-band data of JERS-1 SAR imagery using InSAR and DInSAR processing techniques. As a result of analyzing the extracted coherence and interferogram images, it was shown that the DInSAR 3-pass method produces more suitable coherence values than the InSAR method. The accuracies of DEM extracted from the SAR data were evaluated by employing the DEM derived from the digital topographic maps of 1:5000 scale as reference data. And it was ascertained that baselines between antenna locations largely affect the accuracy of extracted DEM.

High Resolution InSAR Phase Simulation using DSM in Urban Areas (도심지역 DSM을 이용한 고해상도 InSAR 위상 시뮬레이션)

  • Yoon, Geun-Won;Kim, Sang-Wan;Lee, Yong-Woong;Lee, Dong-Cheon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • Since the radar satellite missions such as TerraSAR-X and COSMO-SkyMed were launched in 2007, the spatial resolution of spaceborne SAR(Synthetic Aperture Radar) images reaches about 1 meter at spotlight mode. In 2011, the first Korean SAR satellite, KOMPSAT-5, will be launched, operating at X-band with the highest spatial resolution of 1 m as well. The improved spatial resolution of state-of-the-art SAR sensor suggests expanding InSAR(Interferometric SAR) analysis in urban monitoring. By the way, the shadow and layover phenomena are more prominent in urban areas due to building structure because of inherent side-looking geometry of SAR system. Up to date the most conventional algorithms do not consider the return signals at the frontage of building during InSAR phase and SAR intensity simulation. In this study the new algorithm introducing multi-scattering in layover region is proposed for phase and intensity simulation, which is utilized a precise LIDAR DSM(Digital Surface Model) in urban areas. The InSAR phases simulated by the proposed method are compared with TerraSAR-X spotlight data. As a result, both InSAR phases are well matched, even in layover areas. This study will be applied to urban monitoring using high resolution SAR data, in terms of change detection and displacement monitoring at the scale of building unit.

Ground Settlement Monitoring using SAR Satellite Images (SAR 위성 영상을 이용한 도심지 지반 침하 모니터링 연구)

  • Chungsik, Yoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.55-67
    • /
    • 2022
  • In this paper, fundamentals and recent development of the interferometric synthetic aperture radar, known as InSAR, technique for measuring ground deformation through satellite image analysis are presented together with case histories illustrating its applicability to urban ground deformation monitoring. A study area in Korea was selected and processed based on the muti-temporal time series InSAR analysis, namely SBAS (Small Baseline Subset)-InSAR and PS (Persistent Scatterers)-InSAR using Sentinel-1A SAR images acquired from the year 2014 onward available from European Space Agency Copernicus Program. The ground settlement of the study area for the temporal window of 2014-2022 was evaluated from the viewpoint of the applicability of the InSAR technique for urban infrastructure settlement monitoring. The results indicated that the InSAR technique can reasonably monitor long-term settlement of the study area in millimetric scale, and that the time series InSAR technique can effectively measure ground settlement that occurs over a long period of time as the SAR satellite provides images of the Korean Peninsula at regular time intervals while orbiting the earth. It is expected that the InSAR technique based on higher resolution SAR images with small temporal baseline can be a viable alternative to the traditional ground borne monitoring method for ground deformation monitoring in the 4th industrial era.

Radarsat-1 ScanSAR Quick-look Signal Processing and Demonstration Using SPECAN Algorithm (SPECAN 알고리즘을 이용한 Radatsat-1 ScanSAR Quick-look 신호 처리 및 검증 알고리즘 구현)

  • Song, Jung-Hwan;Lee, Woo-Kyung;Kim, Dong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.75-86
    • /
    • 2010
  • As the performance of the spaceborne SAR has been dramatically enhanced and demonstrated through advanced missions such as TerraSAR and LRO(Lunar Reconnaissance Orbiter), the need for highly sophisticated and efficient SAR processor is also highlighted. In Korea, the activity of SAR researches has been mainly concerned with SAR image applications and the current SAR raw data studies are mostly limited to stripmap mode cases. The first Korean spaceborne SAR is scheduled to be operational from 2010 and expected to deliver vast amount of SAR raw data acquired from multiple operational scenarios including ScanSAR mode. Hence there will be an increasing demand to implement ground processing systems that enable to analyze the acquired ScanSAR data and generate corresponding images. In this paper, we have developed an efficient ScanSAR processor that can be directly applied to spaceborne ScanSAR mode data. The SPECAN(Spectrum Analysis) algorithm is employed for this purpose and its performance is verified through RADARSAT-1 ScanSAR raw data taken over Korean peninsular. An efficient quick-look processing is carried out to produce a wide-swath SAR image and compared with the conventional RDA processing case.

Performance Analysis of the reconstruction Algorithms in the Stripmap-mode SAR (Stripmap-mode SAR에서의 영상복원 알고리즘의 성능분석)

  • 박현복;김형주;최정희
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.29-33
    • /
    • 2000
  • The classical image reconstruction for stripmap SAR is based on the Fresnel approximation which utilizes deramping or chirp deconvolution in the synthetic aperture(slow-time) domain. Another approach in formulating stripmap SAR processing and imaging is based on the SAR wavefront reconsturction theory, and analysis of the SAR signal in the slow-time via the spherical wave Fourier decomposition of the radar radiation pattern. In this paper, we compare the Fresnel approximation and the wavefrong reconstruction methods using simulated stripmap SAR dada.

  • PDF