• Title/Summary/Keyword: SAO구조

Search Result 17, Processing Time 0.024 seconds

Low Area Hardware Design of Efficient SAO for HEVC Encoder (HEVC 부호기를 위한 효율적인 SAO의 저면적 하드웨어 설계)

  • Cho, Hyunpyo;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.169-177
    • /
    • 2015
  • This paper proposes a hardware architecture for an efficient SAO(Sample Adaptive Offset) with low area for HEVC(High Efficiency Video Coding) encoder. SAO is a newly adopted technique in HEVC as part of the in-loop filter. SAO reduces mean sample distortion by adding offsets to reconstructed samples. The existing SAO requires a great deal of computational and processing time for UHD(Ultra High Definition) video due to sample by sample processing. To reduce SAO processing time, the proposed SAO hardware architecture processes four samples simultaneously, and is implemented with a 2-step pipelined architecture. In addition, to reduce hardware area, it has a single architecture for both luma and chroma components and also uses optimized and common operators. The proposed SAO hardware architecture is designed using Verilog HDL(Hardware Description Language), and has a total of 190k gates in TSMC $0.13{\mu}m$ CMOS standard cell library. At 200MHz, it can support 4K UHD video encoding at 60fps in real time, but operates at a maximum of 250MHz.

Hardware Design of Efficient SAO for High Performance In-loop filters (고성능 루프내 필터를 위한 효율적인 SAO 하드웨어 설계)

  • Park, Seungyong;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.543-545
    • /
    • 2017
  • This paper describes the SAO hardware architecture design for high performance in-loop filters. SAO is an inner module of in-loop filter, which compensates for information loss caused by block-based image compression and quantization. However, HEVC's SAO requires a high computation time because it performs pixel-unit operations. Therefore, the SAO hardware architecture proposed in this paper is based on a $4{\times}4$ block operation and a 2-stage pipeline structure for high-speed operation. The information generation and offset computation structure for SAO computation is designed in a parallel structure to minimize computation time. The proposed hardware architecture was designed with Verilog HDL and synthesized with TSMC chip process 130nm and 65nm cell library. The proposed hardware design achieved a maximum frequency of 476MHz yielding 163k gates and 312.5MHz yielding 193.6k gates on the 130nm and 65nm processes respectively.

  • PDF

Area Efficient Hardware Design for Performance Improvement of SAO (SAO의 성능개선을 위한 저면적 하드웨어 설계)

  • Choi, Jisoo;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.391-396
    • /
    • 2013
  • In this paper, for HEVC decoding, an SAO hardware design with less processing time and reduced area is proposed. The proposed SAO hardware architecture introduces the design processing $8{\times}8$ CU to reduce the hardware area and uses internal registers to support $64{\times}64$ CU processing. Instead of previous top-down block partitioning, it uses bottom-up block partitioning to minimize the amount of calculation and processing time. As a result of synthesizing the proposed architecture with TSMC $0.18{\mu}m$ library, the gate area is 30.7k and the maximum frequency is 250MHz. The proposed SAO hardware architecture can process the decode of a macroblock in 64 cycles.

Hardware Design of High-Performance SAO in HEVC Encoder for Ultra HD Video Processing in Real Time (UHD 영상의 실시간 처리를 위한 고성능 HEVC SAO 부호화기 하드웨어 설계)

  • Cho, Hyun-pyo;Park, Seung-yong;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.271-274
    • /
    • 2014
  • This paper proposes high-performance SAO(Sample Adaptive Offset) in HEVC(High Efficiency Video Coding) encoder for Ultra HD video processing in real time. SAO is a newly adopted technique belonging to the in-loop filter in HEVC. The proposed SAO encoder hardware architecture uses three-layered buffers to minimize memory access time and to simplify pixel processing and also uses only adder, subtractor, shift register and feed-back comparator to reduce area. Furthermore, the proposed architecture consists of pipelined pixel classification and applying SAO parameters, and also classifies four consecutive pixels into EO and BO concurrently. These result in the reduction of processing time and computation. The proposed SAO encoder architecture is designed by Verilog HDL, and implemented by 180k logic gates in TSMC $0.18{\mu}m$ process. At 110MHz, the proposed SAO encoder can support 4K Ultra HD video encoding at 30fps in real time.

  • PDF

Hardware Design of High Performance In-loop Filter in HEVC Encoder for Ultra HD Video Processing in Real Time (UHD 영상의 실시간 처리를 위한 고성능 HEVC In-loop Filter 부호화기 하드웨어 설계)

  • Im, Jun-seong;Dennis, Gookyi;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.401-404
    • /
    • 2015
  • This paper proposes a high-performance in-loop filter in HEVC(High Efficiency Video Coding) encoder for Ultra HD video processing in real time. HEVC uses in-loop filter consisting of deblocking filter and SAO(Sample Adaptive Offset) to solve the problems of quantization error which causes image degradation. In the proposed in-loop filter encoder hardware architecture, the deblocking filter and SAO has a 2-level hybrid pipeline structure based on the $32{\times}32CTU$ to reduce the execution time. The deblocking filter is performed by 6-stage pipeline structure, and it supports minimization of memory access and simplification of reference memory structure using proposed efficient filtering order. Also The SAO is implemented by 2-statge pipeline for pixel classification and applying SAO parameters and it uses two three-layered parallel buffers to simplify pixel processing and reduce operation cycle. The proposed in-loop filter encoder architecture is designed by Verilog HDL, and implemented by 205K logic gates in TSMC 0.13um process. At 110MHz, the proposed in-loop filter encoder can support 4K Ultra HD video encoding at 30fps in realtime.

  • PDF

Sample Adaptive Offset using Pipeline for HEVC Hardware Design (HEVC 의 하드웨어 설계를 위한 파이프라인 방식을 적용한 SAO)

  • Jeon, Jin;Kim, Munchurl;Kim, Hyunmi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.468-470
    • /
    • 2012
  • 본 논문에서는 High Efficiency Video Coding (HEVC)을 하드웨어로 구현하기 위해서 파이프라인 방식을 인-루프 필터에 새롭게 도입된 기술인 Sample Adaptive Offset (SAO)에 적용하여 병렬화 처리하는 방법을 제안한다. 현재 HEVC 에서 SAO 의 입출력이 프레임단위로 구현되어 있는데, 이를 파이프라인 방식의 하드웨어 설계시에는 Largest Coding Unit(LCU)단위로 입출력이 가능하도록 수정해야 한다. SAO 에서 사용하는 두 가지 방식으로 Edge Offset(EO)과 Band Offset(BO)모드가 있으며, 이 중 EO 모드가 주변 화소값을 이용하므로 주변 화소값 정보가 없는 LCU 경계에 위치한 화소들을 버퍼에 저장한 뒤, 다음 LCU 블록의 입력과 함께 SAO 를 수행한다. 또한, SAO 앞 단의 인-루프 필터 기술인 디블록킹 필터(Deblocking Filter)에서도 LCU 단위로 입출력이 수행되므로 디블록킹 필터에서 저장하는 버퍼를 고려하면, SAO 입력에서 사용가능한 데이터는 LCU 가 천이된 형태가 된다. 따라서 SAO 입력의 천이된 형태와 버퍼 사용에 따라 총 9 가지 타입을 갖게 되며, 이 중 경계에 위치한 블록을 제외한 타입들의 경우 서로 다른 정보를 가진 SAO 를 4 번 수행해야 한다. 이러한 점을 반영한 파이프라인 방식을 SAO 에 적용하여 하드웨어에 적합한 구조를 구현할 수 있다.

  • PDF

The Hardware Design of Effective Sample Adaptive Offset for High Performance HEVC Decoder (고성능 HEVC 복호기를 위한 효과적인 Sample Adaptive Offset 하드웨어 설계)

  • Park, Seungyong;Lee, Dongweon;Ryoo, Kwangki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.645-648
    • /
    • 2012
  • 본 논문에서는 고성능 HEVC(High Efficiency Video Coding) 복호기 설계를 위한 효율적인 SAO(Sample Adaptive Offset)의 하드웨어 구조 설계에 대해 기술한다. SAO는 양자화 등의 손실 압축에 의해 발생하는 정보의 손실을 보상하는 기술이다. 하지만 HEVC의 최대 블록 크기인 $64{\times}64$ 단위를 화소 단위 연산을 수행하기 때문에 높은 연산시간 및 연산량이 요구된다. 따라서 본 논문에서 제안하는 SAO 하드웨어 구조는 $8{\times}8$ 단위를 처리하는 연산기로 구성하여 하드웨어 면적을 최소화하였고, 내부레지스터를 이용하여 $64{\times}64$ 블록 크기를 지원한다. 또한 기존 SAO의 top-down 블록분할 구조에서 down-top 블록분할 구조로 설계하여 연산시간 및 연산량을 최소화 하였다. 제안하는 하드웨어 구조는 Verilog HDL로 설계하였으며, TSMC 칩 공정 $0.18{\mu}m$ 셀 라이브러리로 합성한 결과 동작 주파수는 250MHz, 전체 게이트 수는 45.4k 이다.

Hardware Design of In-loop Filter for High Performance HEVC Encoder (고성능 HEVC 부호기를 위한 루프 내 필터 하드웨어 설계)

  • Park, Seungyong;Im, Junseong;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.335-342
    • /
    • 2016
  • This paper proposes efficient hardware structure of in-loop filter for a high-performance HEVC (High Efficiency Video Coding) encoder. HEVC uses in-loop filter consisting of deblocking filter and SAO (Sample Adaptive Offset) to improve the picture quality in a reconstructed image due to a quantization error. However, in-loop filter causes an increase in complexity due to the additional encoder and decoder operations. A proposed in-loop filter is implemented as a three-stage pipeline to perform the deblocking filtering and SAO operation with a reduced number of cycles. The proposed deblocking filter is also implemented as a six-stage pipeline to improve efficiency and performs a new filtering order for efficient memory architecture. The proposed SAO processes six pixels parallelly at a time to reduce execution cycles. The proposed in-loop filter encoder architecture is designed by Verilog HDL, and implemented by 131K logic gates in TSMC $0.13{\mu}m$ process. At 164MHz, the proposed in-loop filter encoder can support 4K Ultra HD video encoding at 60fps in real time.

The Hardware Design of Effective In-loop Filter for High Performance HEVC Decoder (고성능 HEVC 복호기를 위한 효과적인 In-loop Filter 하드웨어 설계)

  • Park, Seungyong;Cho, Hyunpyo;Park, Jaeha;Kang, Byungik;Ryoo, Kwangki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1506-1509
    • /
    • 2013
  • 본 논문에서는 고성능 HEVC(High Efficiency Video Coding) 복호기 설계를 위한 효율적인 in-loop filter의 하드웨어 구조 설계에 대해 기술한다. in-loop filter는 deblocking filter와 SAO로 구성되며, 블록 단위 영상 압축 및 양자화 등에서 발생하는 정보의 손실을 보상하는 기술이다. 하지만 HEVC는 $64{\times}64$ 블록 크기까지 화소 단위 연산을 수행하기 때문에 높은 연산시간 및 연산량이 요구된다. 따라서 본 논문에서 제안하는 in-loop filter의 deblocking filter 모듈과 SAO 모듈은 최소 연산 단위인 $8{\times}8$ 블록 연산기로 구성하여 하드웨어 면적을 최소화하였다. 또한 SAO에서는 $8{\times}8$ 블록의 연산 결과를 내부레지스터에 저장하는 구조로 $64{\times}64$ 블록 크기를 지원하도록 설계하여 연산시간 및 연산량을 최소화 하였다. 제안하는 하드웨어 구조는 Verilog HDL로 설계하였으며, TSMC 칩 공정 180nm 셀 라이브러리로 합성한 결과 동작 주파수는 270MHz이고, 전체 게이트 수는 48.9k이다.

Development of an AIDA(Automatic Incident Detection Algorithm) for Uninterrupted Flow By Diminishing the Random Noise Effect of Traffic Detector Variables (검측 변수내 Random Noise 제거를 통한 연속류 돌발상황 자동감지알고리즘 개발)

  • Choi, Jong-Tae;Shin, Chi-Hyun;Kang, Seung-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.29-38
    • /
    • 2012
  • The data quality and measurements along consecutive detector stations can vary much even in the same traffic conditions due to variety in detector types, calibration and maintenance effort, field operation periods, minor geometric changes of roads and so on. These faulty situations often create 10% or more of inherent difference in important traffic measurements between two stations even under stable low flow condition. Low detection rates(DR) and high false alarm rates(FAR) therefore sets in among many popular Automatic Incident Detection Algorithms(AIDA). This research is two-folded and aims mainly to develop a new AIDA for uninterrupted flow. For this purpose, a technique which utilizes a Simple Arithmetic Operation(SAO) of traffic variables is introduced. This SAO technique is designed to address the inherent discrepancy of detector data observed successive stations, and to overcome the degradation of AIDA performance. It was found that this new algorithm improves DR as much as 95 percent and above. And mean time to detection(MTTD) is found to be 1 minutes or less. When it comes to FAR, this new approach compared to existing AIDAs reduces FAR up to 31.0 percent. And capability in persistency check of on-going incidents was found excellent as well.