When analyzing default predictions in real estate companies, the number of non-defaulted cases always greatly exceeds the defaulted ones, which creates the two-class imbalance problem. This lowers the ability of prediction models to distinguish the default sample. In order to avoid this sample selection bias and to improve the prediction model, this paper applies a minority sample generation approach to create new minority samples. The logistic regression, support vector machine (SVM) classification, and neural network (NN) classification use an imbalanced dataset. They were used as benchmarks with a single prediction model that used a balanced dataset corrected by the minority samples generation approach. Instead of using prediction-oriented tests and the overall accuracy, the true positive rate (TPR), the true negative rate (TNR), G-mean, and F-score are used to measure the performance of default prediction models for imbalanced dataset. In this paper, we describe an empirical experiment that used a sampling of 14 default and 315 non-default listed real estate companies in China and report that most results using single prediction models with a balanced dataset generated better results than an imbalanced dataset.
Objective Korean medicine Data Center (KDC) has established large-scale biological and clinical data based on Korean medicine to demonstrate and validate its theory. The aim of this study was to develop KDC teaching dataset and user guideline to improve utilization of the KDC. Method KDC teaching dataset were selected using stratified random sampling according to the Sasang constitution (SC). This dataset included 72 variables of 500 sample subjects. The user guideline described how to conducted eight statistical analysis methods using the teaching dataset. Results The KDC teaching dataset was sampled from 200(40%) Taeeumin, 125(25%) Soeumin, and 175(35%) Soyanain. It was consisted of questionnaire (basic, habit, disease, symptom), physical exam (body measurement, blood pressure), blood exam, and expert' SC diagnosis. The usage guidelines provided instruction for users to perform several statistical analysis step by step with KDC teaching dataset. Conclusion We hope that our results will contribute to enhancing KDC utilization and understanding.
Communications for Statistical Applications and Methods
/
v.11
no.2
/
pp.399-411
/
2004
A common method of handling nonresponse in sample survey is to delete the cases, which may result in a substantial loss of cases. Thus in certain situation, it is of interest to create a complete set of sample values. In this case, a popular approach is to impute the missing values in the sample by the mean or the median of responders. The difficulty with this method which just replaces each missing value with a single imputed value is that inferences based on the completed dataset underestimate the precision of the inferential procedure. Various suggestions have been made to overcome the difficulty but they might not be appropriate for public-use files where the user has only limited information for about the reasons for nonresponse. In this note, a multiple imputation method is considered to create complete dataset which might be used for all possible inferential procedures without misleading or underestimating the precision.
International Journal of Computer Science & Network Security
/
v.23
no.1
/
pp.89-95
/
2023
Analyzing breast cancer patient files is becoming an exciting area of medical information analysis, especially with the increasing number of patient files. In this paper, breast cancer data is collected from Khartoum state hospital, and the dataset is classified into recurrence and no recurrence. The data is imbalanced, meaning that one of the two classes have more sample than the other. Many pre-processing techniques are applied to classify this imbalanced data, resampling, attribute selection, and handling missing values, and then different classifiers models are built. In the first experiment, five classifiers (ANN, REP TREE, SVM, and J48) are used, and in the second experiment, meta-learning algorithms (Bagging, Boosting, and Random subspace). Finally, the ensemble model is used. The best result was obtained from the ensemble model (Boosting with J48) with the highest accuracy 95.2797% among all the algorithms, followed by Bagging with J48(90.559%) and random subspace with J48(84.2657%). The breast cancer imbalanced dataset was classified into recurrence, and no recurrence with different classified algorithms and the best result was obtained from the ensemble model.
Journal of the Korea Society of Computer and Information
/
v.29
no.1
/
pp.21-30
/
2024
In this paper, we propose a method to build a sample dataset of the features of eight sensor-only facilities built as infrastructure for autonomous cooperative driving. The feature extracted from point cloud data acquired by LiDAR and build them into the sample dataset for recognizing the facilities. In order to build the dataset, eight sensor-only facilities with high-brightness reflector sheets and a sensor acquisition system were developed. To extract the features of facilities located within a certain measurement distance from the acquired point cloud data, a cylindrical projection method was applied to the extracted points after applying DBSCAN method for points and then a modified OTSU method for reflected intensity. Coordinates of 3D points, projected coordinates of 2D, and reflection intensity were set as the features of the facility, and the dataset was built along with labels. In order to check the effectiveness of the facility dataset built based on LiDAR data, a common CNN model was selected and tested after training, showing an accuracy of about 90% or more, confirming the possibility of facility recognition. Through continuous experiments, we will improve the feature extraction algorithm for building the proposed dataset and improve its performance, and develop a dedicated model for recognizing sensor-only facilities for autonomous cooperative driving.
We present high-resolution optical spectra of newly selected candidates of intermediate-mass black holes. The sample was selected based on the variability and spectral shape in X-ray. The spectra was taken with Magellan 6.5 m Clay Telescope and cover the rest-frame region 3500-10000A. The high spectral resolution (R~4000) of the spectrum allows us to estimate BH masses of the sources. Interestingly, the majority of the sample appears to have broad emission lines. Using this dataset, we will estimate the BH masses and Eddington ratio in order to understand their physical properties.
Different samples can have different effects on learning support vector machine (SVM) classifiers. To rebalance an imbalanced dataset, it is reasonable to reduce non-informative samples and add informative samples for learning classifiers. Safe sample screening can identify a part of non-informative samples and retain informative samples. This study developed a resampling algorithm for Rebalancing imbalanced data using Safe Sample Screening (Re-SSS), which is composed of selecting Informative Samples (Re-SSS-IS) and rebalancing via a Weighted SMOTE (Re-SSS-WSMOTE). The Re-SSS-IS selects informative samples from the majority class, and determines a suitable regularization parameter for SVM, while the Re-SSS-WSMOTE generates informative minority samples. Both Re-SSS-IS and Re-SSS-WSMOTE are based on safe sampling screening. The experimental results show that Re-SSS can effectively improve the classification performance of imbalanced classification problems.
In this study, some of the recently reported data processing strategies were evaluated and modified based on their capabilities and a brief workflow for data mining was redefined for Q-TOF LC-MS based untargeted metabolomics. Commercial pooled human plasma samples were used for this purpose. An ultrafiltration procedure was applied on sample preparation. Sample set was analyzed through Q-TOF LC/MS. A C18 column (Agilent Zorbax 1.8 µM, 50 × 2.1 mm) was used for chromatographic separation. Raw chromatograms were processed using XCMS - R programming language edition and Isotopologue Parameter Optimization (IPO) was used to optimize XCMS parameters. The raw XCMS table was processed using MS Excel to find reliable and reproducible peaks. Totally 1650 reliable and reproducible potential metabolite peaks were found based on the data processing procedures given in this paper. The redefined dataset was upload into MetaboAnalyst platform and the identified metabolites were matched with 86 metabolic pathways. Thus, two list were obtained and presented in this study as supplement files. The first list is to present the retention times and m/z values of detected metabolite peaks. The second list is the metabolic pathways related with the identified metabolites. The briefly described data processing strategies and dataset presented in this study could be beneficial for the researchers working on untargeted metabolomics for processing their data and validating their results.
Communications for Statistical Applications and Methods
/
v.30
no.4
/
pp.411-421
/
2023
This paper provides a new estimation equation based on the concept of a minimum distance between the empirical and theoretical distribution functions under the most widely used progressive Type-II censoring scheme. For illustrative purposes, simulated and real datasets from a three-parameter Weibull distribution are analyzed. For comparison, the most popular estimation methods, the maximum likelihood and maximum product of spacings estimation methods, are developed together. In the analysis of simulated datasets, the excellence of the provided estimation method is demonstrated through the degree of the estimation failure of the likelihood-based method, and its validity is demonstrated through the mean squared errors and biases of the estimators obtained from the provided estimation equation. In the analysis of the real dataset, two types of goodness-of-fit tests are performed on whether the observed dataset has the three-parameter Weibull distribution under the progressive Type-II censoring scheme, through which the performance of the new estimation equation provided is examined.
Air-writing recognition is relevant in areas such as natural human-computer interaction, augmented reality, and virtual reality. A trajectory is the most natural way to represent air writing. We analyze the recognition accuracy of words written in air considering five features, namely, writing direction, curvature, trajectory, orthocenter, and ellipsoid, as well as different parameters of a hidden Markov model classifier. Experiments were performed on two representative datasets, whose sample trajectories were collected using a Leap Motion Controller from a fingertip performing air writing. Dataset D1 contains 840 English words from 21 classes, and dataset D2 contains 1600 English words from 40 classes. A genetic algorithm was combined with a hidden Markov model classifier to obtain the best subset of features. Combination ftrajectory, orthocenter, writing direction, curvatureg provided the best feature set, achieving recognition accuracies on datasets D1 and D2 of 98.81% and 83.58%, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.