• Title/Summary/Keyword: SAMCEF

Search Result 26, Processing Time 0.028 seconds

Performance Evaluation and Sensitivity Analysis of the Pantograph for the High-Speed Train Using Finite Element Analysis Method (유한요소해석 기법을 이용한 고속철도용 판토그래프 집전성능 평가 및 민감도 분석)

  • Lee, Jin-Hee;Paik, Jin-Sung;Kim, Young-Guk;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1874-1880
    • /
    • 2011
  • In this paper, sensitivity analysis of the pantograph for the high-speed Train was conducted using finite element analysis method. Dynamic interaction of catenary-pantograph model was simulated by using a commercial finite element analysis software, SAMCEF. Pantograph was assumed to be three degree of freedom mass-spring-damper model and the pre-sag of the contact and messenger wire was implemented due to gravity. The span data of the actual high-speed line and specification of pantograph for high-speed train was applied in the analysis model, respectively. The reliability of the simulation model is verified by comparing the contact force results of simulation and test. Through the simulation, mean contact force and its deviation was evaluated and then sensitivity of the pantograph was analyzed.

  • PDF

Brake Squeal Noise Due to Disk Run-out (디스크 런아웃에 기인한 브레이크 스퀼소음)

  • Lim, Jae-Hoon;Cho, Sung-Jin;Choi, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.595-600
    • /
    • 2004
  • This paper deals with a cause analysis of a squeal noise in a brake system. It has been proved that the squeal noise is influenced by the angular misalignment of a disk, disk run-out, with the previously experimental study. In this study, a cause of the noise is examined by using FE analysis program(SAMCEF) and numerical analyses with a derived analytical equation of the disk based on the experimental results. The FE analyses and numerical results show that the squeal noise is due to the disk run-out as the experimental results and the frequency component of the noise equals to that of a disk's bending mode arising from the Hopf bifurcation.

  • PDF

Computational Mechatronics Analysis to Design High Precision N.C. Machine (공작기계의 정밀도 향상을 위한 전산 메카트로닉스 해석)

  • Kim, Dong-Hyun;Kim, Dong-Man;Park, Kang-Kyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.205-209
    • /
    • 2008
  • In this study, very accurate computational mechatronics method has been developed for typical N.C. machine model applying to manufacturing industry in these days. Computation analysis of high speed machine tools like N.C. machine needs consideration about mechatronical features because the machine shows close interaction between dynamic behavior of the mechanical structure, drives and numerical control. For this, nonlinear structural analysis tools based on FEM are linked numerical control program to control the dynamic behavior. In this study, we studied the dynamic feature of N.C. machine by using SAMCEF as nonlinear computational structural analysis tool and simulink as drivers.

  • PDF

Brake Judder due to Disc Run-out (디스크 런아웃에 기인한 브레이크의 저더 진동)

  • Shin, Bum-Sik;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.223-228
    • /
    • 2006
  • Brake judder of an automotive vehicle is defined as an abnormal vibration of low frequency during braking. Under the assumption that judder occurs due to disc run-out and is a resonance phenomenon with a specific parts of the automobile, computational simulations using SAMCEF software were performed in this paper. The results show that the stabilizer of the car is a possible part which makes the judder vibration due to resonance. And initial braking velocity, the magnitude of run-out, and the friction coefficient between disk and pad are the influential factors to the brake judder.

  • PDF

Impact Dynamic Analysis for the Wheel-Type Landing Gear System of Helicopter (헬리콥터 휠타입 착륙장치 충돌특성 연구)

  • Park, Hyo-Geun;Kim, Dong-Man;Kim, Dong-Hyun;Cho, Yun-Mo;Chung, Jae-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.12-22
    • /
    • 2008
  • In this study, the dynamic characteristics for the wheel-type landing gear system of helicopter have been analyzed. Nonlinear multi-body dynamic models of the landing gear system are constructed and the equations of motion, kinematics and internal forces of shock strut are considered. In addition, flexibility effect of the wheel axle with equivalent beam element is taken into account. General purpose commercial finite code, SAMCEF which includes MECANO module is applied. The results of dynamic simulation for various landing and weight conditions are presented and compared with each other. Based on the results, characteristics of impact dynamic behaviors of the landing gear system are practically investigated.

디스크 브레이크 저더 개선을 위한 신뢰성 향상 연구

  • Jeong, Won-Seon;Lee, Chang-Su;Song, Hyeon-Seok;Jeong, Do-Hyeon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.99-106
    • /
    • 2011
  • In this study, the analysis technique, which can estimate the temperature rise and thermal deformation of the ventilated disc considering the vehicle information, braking condition and properties of the disc and pad, is developed. The analytical process of the braking power generation during braking is mathematically derived. The thermal energy, which is applied to the surface of a disc as heat flux, is calculated. Then, the temperature rise and thermal deformation of a disc are estimated using FE software, SAMCEF. Shape of the cross section of the disc is optimized according to the response surface analysis method in order to minimize the temperature rise and thermal deformation. The hot judder analysis is done using the optimized disc, and the analysis results are discussed.

  • PDF

Vibration Reduction of Electric-powered Hand Grinder (전동 핸드그라인더의 진동 저감)

  • 조성진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.831-836
    • /
    • 2004
  • Vibration of electric-powered hand grinder comes from the parts of motor, gear, bearing, and fan. Excessive vibration can be harmful to workers. To reduce vibration of a hand grinder we analyzed the frequency components from the routing electric-powered grinder and did modal test to find the natural frequencies of the each part. It shows that the vibration is due to the resonance of the case. To remove the resonance, the case structure is modified and the bearing cap is replaced on a basis of the results from the rotor dynamic analysis using SAMCEF. As a result the vibration of the hand grinder is reduced greatly.

  • PDF

Development of Numerical Analysis Model to Estimate the Contact Force between the Pantograph and Catenary of a High-speed Train (고속 철도 차량용 판토그래프와 가선계의 접촉력 예측을 위한 수치 해석 모델 개발)

  • Jung, Sung-Pil;Park, Tae-Won;Kim, Young-Guk;Paik, Jin-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.461-467
    • /
    • 2011
  • This study aims to create a numerical analysis model which can investigate the dynamic interaction between pantograph and overhead contact wire used for a high-speed railway vehicle, and validate the simulation results according to EN 50318 standard. Finite element analysis models of pantograph and overhead contact line are created using SAMCEF, a commercial FE analysis program. The mean, standard deviation, maximum and minimum values of contact forces are obtained. The simulation results are validated according to EN 50318, and the possibility of simulating the collecting characteristic of an actual pantograph system by using the developed model is discussed.

Multi-axial Stress Analysis and Experimental Validation to Estimate of the Durability Performance of the Automotive Wheel (자동차용 휠의 내구성능 예측을 위한 복합축 응력해석 및 실험적 검증)

  • Jung, Sung-Pil;Chung, Won-Sun;Park, Tae-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.875-882
    • /
    • 2011
  • In this paper, the finite element analysis model of the mult-axial wheel durability test configuration is created using SAMCEF. Mooney-Rivlin 2nd model is applied to the tire model, and the variation of the air pressure inside the tire is considered. Vertical load, lateral load and camber angle are applied to the simulation model. The tire rotates because of the friction contact with a drum, and reaches its maximum speed of 60 km/h. The dynamics stress results of the simulation and experiment are compared, and the reliability of the simulation model is verified.

Vibration Reduction of Electric Hand Grinder (전동 핸드그라인더의 진동 저감#)

  • 조성진;최연선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1035-1040
    • /
    • 2004
  • The vibration of an electric hand grinder originates from the motor, gear, bearing, and fan. Its excessive vibration can be harmful to workers. To reduce the vibration of an electric hand grinder. frequency analysis for the vibration signals of a running electric hand grinder and modal test for the each part were done. The results show that the vibration is due to the resonance of the case. To remove the resonance, the case structure was modified and the bearing cap was replaced on a basis of the results of the rotor dynamic analysis using SAMCEF. As a result, the vibration of the electric hand grinder was reduced greatly.