• 제목/요약/키워드: SAM-X

검색결과 399건 처리시간 0.03초

H-FUZZY SEMITOPOGENOUS PREOFDERED SPACES

  • Chung, S.H.
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.687-700
    • /
    • 1994
  • Throughout this paper we will let H denote the complete Heyting algebra ($H, \vee, \wedge, *$) with order reversing involution *. 0 and 1 denote the supermum and the infimum of $\emptyset$, respectively. Given any set X, any element of $H^X$ is called H-fuzzy set (or, simply f.set) in X and will be denoted by small Greek letters, such as $\mu, \nu, \rho, \sigma$. $H^X$ inherits a structure of H with order reversing involution in natural way, by definding $\vee, \wedge, *$ pointwise (sam notations of H are usual). If $f$ is a map from a set X to a set Y and $\mu \in H^Y$, then $f^{-1}(\mu)$ is the f.set in X defined by f^{-1}(\mu)(x) = \mu(f(x))$. Also for $\sigma \in H^X, f(\sigma)$ is the f.set in Y defined by $f(\sigma)(y) = sup{\sigma(x) : f(x) = y}$ ([4]). A preorder R on a set X is reflexive and transitive relation on X, the pair (X,R) is called preordered set. A map $f$ from a preordered set (X, R) to another one (Y,T) is said to be preorder preserving (inverting) if for $x,y \in X, xRy$ implies $f(x)T f(y) (resp. f(y)Tf(x))$. For the terminology and notation, we refer to [10, 11, 13] for category theory and [7] for H-fuzzy semitopogenous spaces.

  • PDF

내장형 capacitor를 위한 LCP와 $CaTiO_3-LaAlO_3$ 복합재의 유전특성 (Dielectric Properties of Liquid Crystalline Polymers and $CaTiO_3-LaAlO_3$ Composites for Embedded Matching Capacitors)

  • 김진철;오준록
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.232-233
    • /
    • 2007
  • We manufactured Liquid Crystal Polymer (LCP) and (1-x)CaTiO3-xLaAlO3 (CT-LA) ceramic composites and investigated dielectric properties to use as embedded capacitor in printed circuit boards and replace LTCC substrate. The dielectric properties of these composites are varied with volume fraction of CT-LA and ratios of CT/LA. Dielectric constants are in the range of 3~15. In addition, we could get low TCC and High Q value that could not achieve in other ceramic-polymer composites. Especially, in composite with x=0.01 and 30 vol% CT-LA, the dieletric constant and Q-value are 10 and 200, respectively. And more TCC is $-28{\sim}300ppm/^{\circ}C$ in the temperature range of $-55{\sim}125^{\circ}C$. We think that this composites can be used high-Q substrate material like LTCC and embedded temperature compensation capacitor in printed circuit boards.

  • PDF

Microcantilever biosensor: sensing platform, surface characterization and multiscale modeling

  • Chen, Chuin-Shan;Kuan, Shu;Chang, Tzu-Hsuan;Chou, Chia-Ching;Chang, Shu-Wei;Huang, Long-Sun
    • Smart Structures and Systems
    • /
    • 제8권1호
    • /
    • pp.17-37
    • /
    • 2011
  • The microcantilever (MCL) sensor is one of the most promising platforms for next-generation label-free biosensing applications. It outperforms conventional label-free detection methods in terms of portability and parallelization. In this paper, an overview of recent advances in our understanding of the coupling between biomolecular interactions and MCL responses is given. A dual compact optical MCL sensing platform was built to enable biosensing experiments both in gas-phase environments and in solutions. The thermal bimorph effect was found to be an effective nanomanipulator for the MCL platform calibration. The study of the alkanethiol self-assembly monolayer (SAM) chain length effect revealed that 1-octanethiol ($C_8H_{17}SH$) induced a larger deflection than that from 1-dodecanethiol ($C_{12}H_{25}SH$) in solutions. Using the clinically relevant biomarker C-reactive protein (CRP), we revealed that the analytical sensitivity of the MCL reached a diagnostic level of $1{\sim}500{\mu}g/ml$ within a 7% coefficient of variation. Using grazing incident x-ray diffractometer (GIXRD) analysis, we found that the gold surface was dominated by the (111) crystalline plane. Moreover, using X-ray photoelectron spectroscopy (XPS) analysis, we confirmed that the Au-S covalent bonds occurred in SAM adsorption whereas CRP molecular bindings occurred in protein analysis. First principles density functional theory (DFT) simulations were also used to examine biomolecular adsorption mechanisms. Multiscale modeling was then developed to connect the interactions at the molecular level with the MCL mechanical response. The alkanethiol SAM chain length effect in air was successfully predicted using the multiscale scheme.

Physicochemical Characterization and Dissolution Properties of CS-891 with Different Crystallinity

  • Lee, Woo-Young;Park, Byoung-Woo;Park, Yong-Sun
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권4호
    • /
    • pp.279-285
    • /
    • 2005
  • Ground CS-891 (N-[1-(4-methoxyphenyl)-1-methylethyl]-3-oxo-4-aza-5a-androst-1-ene-$17{\beta}$-carboxamide) of poorly water soluble drug was obtained using a Heiko Seisakusho model TI-100 vibration mill, and samples with different crystallinity were prepared at mixture ratios of 10:0, 7:3, 5:5, 3:7 and 0:10 (intact;ground CS-891). Physicochemical characterizations were obtained using qualitative and quantitative X-ray diffractometry, different scanning calorimetry (DSC), scanning electron microscopy (SEM), Quantasorb surface area analyzer, and controlled atmosphere microbalance. With increase of amorphous CS-891 in mixture ratios, the intensities of X-ray diffraction peaks of crystalline CS-891 were decreased, whereas surface area, water absorption, and exothermic peaks in DSC were increased. The apparent solubility of ground CS-891 was $4.4\;{\mu}g/ml$ and the solubility of intact CS-891 was $3.1\;{\mu}g/ml$ at $37{\pm}1^{\circ}C$. The apparent precipitation rates of CS-891 in a supersaturated solution during the solubility test were increased with an increase of amorphous CS-891, and a crystalline form of CS-891 transformed from amorphous CS-891 after the solubility test was found by X-ray diffraction analysis, DSC and SEM. The dissolution profiles of CS-891 with different crystallinity at $37{\pm}1^{\circ}C$ by the USP paddle method were investigated, and the apparent dissolution rate constant of ground CS-891 was about 5.9-fold higher than that of intact CS-891. A linear relationships between the crystallinity of CS-891 and the apparent dissolution rate constant (r>0.96) were obtained.

Composite target으로 증착된 Ti-silicide의 형성에 관한 연구(I) (The Study of Formation of Ti-silicide deposited with composite target(I))

  • 최진석;강성건;황유상;백수현;김영남;정재경;문환구;심태언;이종길
    • 한국재료학회지
    • /
    • 제1권3호
    • /
    • pp.168-174
    • /
    • 1991
  • Ti-Silicides를 single-Si wafer와 그 위에 oxide를 성장시킨 기판위에 composite target($TiSi_{2.6}$)을 sputtering함으로써 증착시켰다. 증착된 비정질 상태의 Ti-silicide는 급속 열처리(RTA)방법으로 $600^{\circ}C$에서 $850^{\circ}C$가지 20초간 처리하였다. RTA온도가 $800^{\circ}C$가 되어서야 비로소 안정한 $TiSi_2$가 형성되었으며, 그 때의 비저항 값은 $27~29{\mu}\Omega-cm$로 Ti-metal reactive방법에 의한 $TiSi_2$보다 약간 높은 값으로 드러났다. X-ray로 상천이를 조사한 결과 역시 $750^{\circ}C$가지 C49 $TiSi_2$가 형성되고, $800^{\circ}C$가 되어서야 안정한 C54 $TiSi_2$로의 상천이가 일어남을 나타내고 있다. 또한 완전히 형성된 Ti-silicide의 조성비는 x-ray photoelectron spectroscopy(XPS)결과에서 Ti : Si이 1 : 2로 드러났으며, 그 동안 reactive 시켰을 때 $TiSi_2$의 단점으로 지적되어 왔던 형성 완료된 $TiSi_2$의 surface roughness는 $17{\pm}1mm$이내로 매우 우수한 값으로 판명되어, device에 대한 응용 가능성을 높이고 있다.

  • PDF

공액구조 전도성 올리고머 자기조립단분자막의 제작 및 전기화학적 특성 (Electrochemical Properties and Fabrication of Conjugated System Conducting Oligomer Self-assembled Monolayer)

  • 민현식;이태연;오세용
    • 공업화학
    • /
    • 제22권5호
    • /
    • pp.545-550
    • /
    • 2011
  • 바이오 분자의 고정 링커로 전기전도도가 높은 방향족 공액구조의 4-(2-(4-(acetylthio)phenyl)ethynyl)benzoic acid (APBA) 분자를 합성한 후, APBA 자기조립 단분자막을 제작하였다. 제작한 APBA 자기조립 단분자막의 구조를 분석하였고, 페로센으로 고정화시킨 APBA의 자기조립 단분자막의 전기화학적 특성을 조사하였다. 부탄티올 단분자막에 APBA를 삽입시켜 혼합 단분자막을 제조하여 XPS로 금 기판에 대한 혼합 단분자막의 수직 배향성을 조사하였다. 또한, APBA 혼합 시간에 따른 APBA와 부탄티올(BT) 혼합 단분자막에 페로센을 고정화하여 전기화학적 산화 환원 특성을 조사하였다. 혼합 단분자막의 전기화학적 활성은 혼합 시간의 증가에 따라 증가하였고, 부탄티올 단분자막 기판을 APBA 용액에 36 h 침지시켰을 때 가장 높은 페로센 분자의 산화 환원 전류값을 얻었다.